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ABSTRACT

It is shown that for strong acousto-optic interaction, the
conventional wave vector diagram must be replaced with a fuzzy
triangle representing the dynamics in the interaction region,

INTRODUCTION

It is well known that the wave vector diagram plays a ubiquitous
role in the heuristic explanation of acousto-optic interaction [1]. It
has been used to explain the Bragg-angle phenomenon, the Doppler
shift of the scattered light, the limited bandwidth of modulators and
deflectors, the ray tracing formalism for diffracted rays, the non-
diffractive nature of Schlieren images of a sound field [2], and the
qualitative apects of strong interaction by multiple scattering.

For weak interaction in two dimensions, it is possible to attach a
numerical, global description to the wave vector diagram in which
the (complex) amplitudes of the various waves involved are
connected by a simple product rule: Scattered wave ∝ Incident wave
x Sound wave. This is no longer the case in strong interaction; a
quantitative global formalism in terms of plane waves only is no
longer possible. However the scattered spectrum may be derived
locally in terms of the incident spectrum and the sound field -- not
the sound wave spectrum -- along the so-called Bragg lines [3].

The underlying reason for this failure of the wave vector diagram to
give a quantatative global description is that in the interaction
region the plane wave amplitude of every order (including the zeroth
order) will vary along the nominal propagion direction Z due to a
strong exchange of energy. In the interaction region the amplitudes
are therefore expressible as Fourier spectra containing terms exp( ±
j κz)where κ is a Z-directed spatial frequency. These terms multiply
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the basic small-angle propagation term exp(-jkzz) to give rise to
overall spatial frequencies kz ± κ.

The waves that the terms exp(-jkzz ± jκz) refer to, are, except for
k=0, no longer pure plane waves satisfying the wave equation in the
unperturbed medium. If we assume that |k|<< kz -- which is true for a
relatively slow dependence on z -- these quasi plane waves may be
taken into account, at least qualitatively, by making the wave vector
diagram fuzzy in the Z- direction, as shown in Fig. 1.

Fig.1a shows the conventional wave vector diagram. Fig.1b
symbolically shows the fuzzy diagram that applies to the
interaction region. In the fuzzy diagram the rectangular  region
around the nominal (center) K vector denotes a spectrum of sound
vectors of identical length that together compose the sound field.
(The top and bottom of the hourglass are straight lines only to a
first approximation for |κ| << K). The spread in k0 and k1 represent k
vectors of different lengths, composing two spatially varying plane
waves with amplitudes E~0(z) and E~1(z) . Fig.1b thus represents Bragg
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a) Wave vector diagram representing global interaction, b) 
fuzzy wave vector diagram representing dynamics in the 
interaction region.

diffraction with an arbitrary sound field that is assumed to be
narrow enough not to generate orders other than 0 and 1. Note that
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the global (overall) representation is still qualitatively given by Fig.
1a, but Fig.1b is representative of the detailed dynamics of the
interaction.

In what follows I will show that the fuzzy diagram follows from the
conventional strong interaction theory for arbitrary fields. It will be
seen that a precise numerical description can be attached to this
diagram, that takes the fuzziness into account. Following that, I will
apply the formalism to the well known cases of pure Bragg
diffraction and near Bragg diffraction. For simplicity I will assume
that the sound wave is wide enough for its spectrum to be
represented by a delta function. It will be seen that in these two
cases the fuzzy wave vector  diagram is not smeared out but rather
consists of  two distinct wave vector  triangles.

WEAK INTERACTION

For weak interaction, the situation represented by Fig.1a may be
summed up as follows

E~1(k1, z= +∞) = -ja S~1(K) E~0(k0) (1)

where  E~0, E
~

1, and S~1 denote plane wave spectral amplitude
densities. The factor a is dependent on the medium and is given by

a = -kpn02/4 (2)

where k is the propagation constant in the medium, n0 its refractive
index and p its appropriate elasto-optic coefficient.

 Eq. (1) refers to weak interaction, hence

E~0(k0) = E~0(k0 , z=-∞) = E~0(k0 , z=+∞) = E~in(k0) (3)

where E~in(k0) denotes the incident plane wave in the spectrum.

STRONG INTERACTION

The general case of upshifted  Bragg diffraction with the plane wave
of light incident at an angle φinc < 0 is shown in Fig. 2. The dotted
line labeled 'b' is the Bragg line [3] appropriate to the interaction. It
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forms the intersection between the zeroth and first orders, and, for
small angles φin and φB, is given by

x = z(φin + φB) (4)

The interaction between the zeroth and first order is mediated by
the sound field along the Bragg line, according to

dE1
dz  = -jaS[z(φin + φB), z]E0(z) (5)

dE0
dz  = -jaS* [z(φin + φB), z]E1(z) (6)
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             Interaction diagram illustrating detailed dynamics in the 
   interaction region.

where we have used plane wave amplitudes rather than spectral
densities, as only a single plane wave of incident light is assumed.

For simplicity we set  φin =-φB and hence (5) and (6) become

dE1
dz  = -jaS[z]E0(z) (7)
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dE0
dz  = -jaS* [z]E1(z) (8)

Next we take the Z-directed inverse Fourier transform of both sides
of equations (5) and (6), using the conjugate variables z and κ. ( The
inverse rather than the forward transform is used, because (5) and
(6) are predicated on the electrical engineering convention,
according to which the plane wave spectrum is the inverse Fourier
transform of the spatial distribution.) The inverse Fourier

transforms will be indicated by  Ê0 (κ), Ê1(κ) and Ŝ(κ).

- j κÊ1(κ) = -jaF - 1 [S(z)E0(z)] = -j
a

2π  Ŝ(κ).*  Ê0 (κ) (9)

- j κÊ0(κ) = -jaF [S*(z)E1(z)] = -j
a

2π   Ŝ*(-κ).*  Ê1 (κ) (10)

where F -1 denotes the inverse Fourier transform operator, and the
symbol *  denotes conjugation.

Multiplying (9) by jκ and substituting into (10) we find

κ2 Ê1 (κ) = 
a2

4π 2 κ{Ŝ(κ) * 
1
κ  [Ŝ*(-κ) * Ê1(κ)]} (11)

Ê0(κ) = 
a

2π κ
  [Ŝ*(-κ).*  Ê1 (κ)] (12)

THE FUZZY WAVE VECTOR DIAGRAM

To see how the equations derived correspond to the fuzzy diagram
discussed before, we must use explicit expressions for the
convolution. From (9) we find

Ê1(κ) =  
a

2π κ
 [Ŝ(κ).*  Ê0 (κ)] =  

a
2π κ ∫

- ∞

∞
 Ŝ (κ') Ê0 (κ −κ')dκ'

(13)
An interpretation of (13) is illustrated in Fig. 3
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We recognize the weak interaction triangle OAB with the wave
vectors k0, k1 and K. The value of κ' is set out perpendicular to K
along the line BD. The dotted line AE represents a sound wave vector
K' in a direction different from K. (As explained before, to a first
approximation the lengths of K and K' are identical.) In eq. (9) we

interpret Ŝ(κ') as the amplitude (density) of the wave in the
direction K'.

Similarly, the point D represents the value κ as indicated in the

drawing. Hence Ê1(κ) should be interpreted as the amplitude
(density) of the scattered wave in the direction k1'.Translating the
sound wave vector K' parallel to itself to link up with k1', we find
the point C with AC equalling κ - κ' The amplitude density of the
corresponding vector k0' should then be equated with twith the

amplitude density Ê0 (κ −κ') from eq. (13).
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 Correspondence of fuzzy wave vector diagram and convolution
integral of interaction.

Putting everything together we see that the contribution

Ŝ(κ') Ê0 (κ −κ')dκ' of the integral in (9) may be interpreted as the
elementary interaction represented by triangle OCD with wave
vectors k0', k1' and K '. In general there are infinitely many such
contributions to k1', mediated by different vectors K'. They are found
by varying the angle of K' , corresponding to varying κ' in the integral
of eq. (13).

Summing up we conclude that in the general case the fuzzy triangle
represents an infinity of interactions, each characterized by a wave
vector triangle. The (optical) waves involved are strictly speaking
not plane waves ; they have the character of eigen-waves in the
perturbed medium. The sound waves are true plane waves; they form
the plane wave spectrum of the sound beam.

CONVENTIONAL STRONG BRAGG DIFFRACTION

Let us now consider the case where

 S(x) =Lim{S0rect(2x/L)} for L→∞ (14)

so that

Ŝ(κ) → 2πS 0δ(κ) (15)

Eq. (11) becomes

[κ2 - 4π 2a2S02]Ê1(κ) = 0 (16)

with the solution

Ê1(κ) = Aδ(κ-aS0) + Bδ(κ+aS0) (17)

E1(x) = Aexp(-jaS0z) +Bexp(jaS0z) (18)

From (12) we find, with (15),
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 Ê0(κ) = 
a

2π κ
  [Ŝ*(-κ).*  Ê1 (κ)]= 

aS0
κ

  Ê1 (κ) =

                          Aδ(κ-aS0) - Bδ(κ+-jaS0aS0) (19)

E0(x) = Aexp(-jaS0z) -Bexp(jaS0z) (20)

Imposing on (18) and (20) the boundary conditions

E1(-L/2) = 0, E0(-L/2) = Einc. (21)

we find, after some algebra, the well known result

E1 = -jE incsin[aS0(z+L/2)] (22)

E0 = Einccos[aS0(z+L/2)] (23)

A graphical interpretation of the conventional strong Bragg
diffraction case is shown in Fig.4. The conventional wave vector
diagram is given by dashed triangle OAB. The more relevant fuzzy
wave vector diagram is given by the combination of triangles OCD
and OEF. The relevant values of κ are ± aS0. Note that for S0 → 0 the
fuzzy diagram becomes the conventional one.
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  Fuzzy wave vector diagram (triangles OCD and OEF) for pure
   Bragg interaction.

THE NEAR-BRAGG REGIME

In this case the nominal direction of the soundwave is no longer at
the exact direction required for Bragg diffraction. Nevertheless
interaction is still possible. For weak diffraction this is usually
explained by considering the plane wave spectrum of the sound beam.
For small angles, this spectrum is proportional to sinc(KθL/2π),
where θ is the propagation angle of the plane wave considered. Thus,
the reasoning goes, if the soundbeam is off by an angle β, there is
still a plane wave available for interaction, albeit with reduced
amplitude sinc(KβL/2π). For strong interaction this reasoning breaks
down. This has been shown most clearly by Molchanov [4] through
what I have called the Molchanov paradox..

 Consider a zero in the sound plane wave spectrum at, say, KβL/2π
=1. If the direction of the sound beam is off by that amount, then
there will be no plane wave available for interaction. And, indeed,
for weak interaction we find that no diffraction takes place.
Conventional near-Bragg diffraction theory however indicates that
interaction still will take place at that angle for higher sound
levels. This in spite of the fact that the plane wave of sound
responsible ( in the conventional weak interaction explanation ) is
absent. It is thus clear that a picure based on the conventional wave
vector diagram, fails. In what follows I shall work through this
example using the fuzzy wave vector diagram.

Let us model the soundbeam by

Ŝ(κ)  = 2πS 0δ(κ -Kβ) (24)

where Kβ is the offset angle.

Substituting (24) into (11), carrying out the convolutions carefully,
including the factor 1/κ where appropriate, we find

 Ê1 (κ)[κ2  - κKβ - a2S02] = 0 (25)
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whence

κ1 = 
Kβ +  K2β2 + 4a2S02

2 (26)

k2 =  
Kβ -  K2β2 + 4a2S02

2 (27)

and hence

 Ê1 (κ) = Aδ(κ- κ1) + Bδ(κ- κ2) (28)

With (12) and  (24) we find from (28)

  Ê0 (κ) = 
aS0

κ
 E1(κ+Kβ) =  

aS0A
κ1-Kβ

 δ(κ- κ1+Kβ) + 
aS0B
κ2-Kβ

 δ(κ- κ2+Kβ)

(29)
or

E1(z) = Aexp(-jκ1z) + Bexp(-jκ2z) (30)

E0(z) =  
aS0A
κ1-Kβ

 exp[-j(κ1-Kβ)z] + 
aS0B
κ2-Kβ

 exp[-j(κ2-Kβ)z] (31)

Applying the boundary conditions (21) it is found, after tedious
algebra, that

 E1(z=L/2) = - jaS0LEin exp(j
KβL
2 )sinc(

K2β2  + 4a2S02

2π L)

(32)
or

E1(z=L/2) = - j
v
2 Einexp(j

KβL
2 ) sinc(

K2β2L2 +  v2

2π ) (33)

where we have used the Raman-Nath parameter

v = 2aS0L (34)
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Eq. (33) throws some light on the inapplicability of the conventional
wave vector diagram. Take first the weak interaction  case v → 0. We
find from (33) that

E1(z=L/2) → - j
v
2 Einexp(j

KβL
2 ) sinc(

Kβl
2π ) for  v → 0 (32)

As pointed out before, in this regime the interaction is proportional
to the amplitude of the  plane wave of sound  propagating in the
direction  required by the conventional wave vector diagram.
(Relative to the main direction of the sound beam this plane wave
propagates in the direction -β. ) The interaction vanishes for an
angle β given by KβL = ± 2π because the required plane wave is
absent. However, (33) shows that when the sound pressure
increases, interaction at this angle returns. As I have said before,
this is Molchanov's paradox  and shows up the insufficiency of the
conventional wave vector diagram.

The fuzzy diagram for the near Bragg case analyzed above  is
illustrated in Fig. 5.
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 Fuzzy wave vector diagram (triangles OCD and OEF) for near-
 Bragg interaction

As in Fig. 4, the dashed  triangle OAB is the conventional wave
vector diagram . The fuzzy diagram consists of triangles OCD and
OEF. According to (26) and (27), for S0 → 0, point F, denoting κ1, w i l l
move toward B and point D, denoting κ2 , will move toward B. When
β=0 the diagram reverts to the one shown in Fig.4.

DISCUSSION

In the examples given, the fuzzy diagram turns out to consist of two
wave vector diagrams. It would have been more convincing to show a
continous fuzziness, but this is mathematically more involved , as it
would require for example a Gaussian beam input (do-able; a
conventional solution is available [5] for guidance) or a continous
sound beam spectrum (problematic, although solutions for curved
sound beams exist [6,7]). I hope to tackle these two cases in the
future.

CONCLUSION

The analysis shows clearly the inapplicability of the conventional
wave vector diagram to strong interaction and the necessity to
replace it by a fuzzy diagram. Analysis of known cases shows
complete agreement with final results. Whether this method of
analysis is more practical than conventional ones remains to be
seen. It does however offer a new interpretation and as such
provides fresh insight into practical problems.
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