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Abstract

We present an experimental and theoretical analysis of  vibration microscopy  using an arbitrarily defined

detection aperture. In the two limiting cases, incoherent operattion (no aperture) offers intensity gradient

information in the amplitude of higher harmonics of the vibration frequency, while coherent operation (pinhole

aperture) reflects the phase of the object being scanned in the amplitude of the first harmonic. The possibilities of

phase microscopy, when using the system  in a coherent mode of operation, are discussed. Vibrating knife

edge, incoherent, coherent, phase microscopy

1. Introduction

In previous papers [1,2,3], we have described a sampling optical microscope with electronically variable

resolution.  In its one-dimensional mode of operation, the microscope utilizes an optically opaque vibrating knife

edge (razor blade) placed in a laser beam, close to a partially transmissive amplitude object to be scanned.  The

transmitted, modulated light from the vicinity of the knife edge constitutes the useful signal, as it carries local

information about the object.  This information is extracted through photodetection and bandpass filtering and

used to form a picture of the object.In [ 2]

it is shown that resolution of the device is on the order of the amplitude of vibration of the knife edge. An

extension of the method to two dimensions involving tomography is discussed in [4].

The present paper reports on incoherent operation (all light detected excluding evanescent waves) and

coherent operation (some light filtered out), and the possibility of phase microscopy in the latter.

The paper is organized as follows.Section 2 discusses what we have called partially coherent operation in

which the detection aperture is an amplitude mask of arbitrary specification.  We first derive the expression for the

total photodetector current in this general case, and then investigate the limits of incoherent and coherent operation.

The incoherent case is characterized by an infinite aperture and leads to detection of integrated intensities.  In the

fully coherent case the aperture is a pinhole, resulting in detection of the integrated amplitude of the field.



 Following the analyses of these limiting cases, we derive, for partially coherent operation, the

fundamental  AC current component.  The resulting expression is applied to a Gaussian slit (a model that makes

explicit evaluation possible) and the results compared with a physical experiment employing a rectangular slit.
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In Section 3 we examine in more detail the limiting cases of incoherent and coherent detection.  For the

incoherent case we take into account all higher harmonics of the fundamental frequency, and show that the

amplitude of the nth harmonic is proportional to the (n-1)th partial derivatives of the intensity distribution at the

knife edge. This is  confirmed by a simple experiment.

 For coherent operation, we limit ourselves for simplicity to the first harmonic, and show that this

component carries information about the phase of the sampled region relative to the phase of the surrounding area.

This is investigated in detail in Section 4, and exemplified by the application of our theory to the field distribution

behind a lens. Experimental results are seen to back up the calculations.

Finally, in Section 5 we state conclusions and suggest future research.

2. Partially Coherent Operation

In this section the general expression for the current generated by a photodetector with an arbitrary aperture

will first be derived, followed by the first harmonic component of the current in the case of a vibrating knife edge.

Finally the first harmonic current found when employing a Gaussian aperture in the derived equations will be

compared with an experiment using a variable slit in front of the photodetector.

For our model we assume that a quasi-monochromatic field E1(x,y,t) is mapped by a Fourier transforming

lens with focal length F into a field E2(x2,y2,t) in the back focal plane.  Using spatial frequency coordinates fx =

x2/Fλ, fy = y2 / Fλ, (λ = light wavelength) we find from the Fourier transforming properties of the lens

E2(fx,fy,t)  ∝ ∫
-∞

∞
 ∫
-∞

∞
 E1(x,y,t)exp(+j2πfxx + j2πfyy) dxdy (1)

where we use the Electrical Engineering convention for phasors.

After being apertured by an amplitude mask G(fx,fy) in the back focal plane of the lens, the field is incident

on a photodetector, generating a current



i(t) ∝  ∫
-∞

∞
 ∫
-∞

∞
 |E2(fx,fy,t)G(fx,fy)|2 dfxdfy (2) 3

According to Parseval's theorem [5] this may also be written as

i(t) ∝  ∫
-∞

∞
 ∫
-∞

∞
 |F{E2(fx,fy,t)G(fx,fy)}|2 dxdy (3)

where F  denotes the Fourier transform.  Using a well known property of the Fourier transform we may write for

(3)

i(t) ∝  ∫
-∞

∞
 ∫
-∞

∞
 |F {E2(fx,fy,t)}* F {G(fx,fy)}|2 dxdy (4)

where the asterisk denotes convolution.  Introducing the function

g(x,y) = F {G(fx,fy)} (5)

and using eq. (4), we find finally:

 i(t) ∝ ∫
-∞

∞
 ∫
-∞

∞
 |E1(x,y,t) * g(x,y)|2 dxdy. (6)



Eq. (6) is the basis equation to be used for calculating partially coherent detection subject to an arbitrary aperture

G.
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We now apply this general expression to the two limiting cases of incoherent and coherent detection.

Incoherent Case

In the incoherent case, we assume that all the light is detected, thus the aperture G(fx,fy) = 1.  When the

Fourier transform of the aperture {g(x,y) = δ(x) δ(y)} is substituted into eq. (6), we have for the incoherent mode

i(t) ∝  ∫
-∞

∞
 ∫
-∞

∞
  |E1(x,y,t)|2 dxdy. (7)

Evidently in the incoherent case we detect the integrated intensity, as previously stated.

Coherent Case

In the coherent case, we utilize a pinhole detector to aperture the photodetector.  For mathematical

simplicity, we model the mask as:

G(fx,fy) = lim
B→0

 sinc(fx/B) sinc(fy/B) (8)

so that

g(x,y) = lim
B→0

 B2rect(xB) rect(yB). (9)

If it is assumed that E1 is limited to an area A2<< (1/B)2 (always true if B → 0 and A is finite) then it may be

shown readily that



E1(x,y,t)*g(x,y) → B2 ∫
-A/2

A/2
  ∫

-A/2

A/2
 E1(x',y',t) dx'dy'    for |x|,|y| < 1/2B 5

               → 0     elsewhere. (10)

We then find from eq. (6)

  i(t) ∝  B2









∫
-∞

∞
 ∫
-∞

∞
E1(x,y,t) dxdy

2

  for B→0. (11)

Hence, as mentioned before, the coherent case involves an integration of the complex amplitude of the field. The

implications of eq. (11) for phase microscopy will be discussed in Sec.4.

First Harmonic

We will now derive an expression for the first time harmonic component of the detector current for the

case of weak modulation by a knife edge.  We write the field E1(x,y,t) as follows

E1(x,y,t) = U(x-xo-∆.cos(ωt)).Ei(x,y) (12)

where the knife edge, nominally situated at xo and vibrating as ∆.cos(ωt), is represented by the step function U(x-

xo-∆.cos(ωt)), and Ei(x,y) denotes the illuminating field.  For simplicity we write cos(ωt) = u and set

E1(x,y,t) → E1(x,y,u) = U(x-xo-∆.u).Ei(x,y). (13)

Hence eq. (6) then becomes

i(u) ∝  ∫
-∞

∞
 ∫
-∞

∞
 |Ei(x,y).U(x-xo-∆.u) * g(x,y)|2 dxdy



       =  ∫
-∞

∞
 ∫
-∞

∞
 [E i(x,y).U(x-xo-∆.u) * g(x,y)] x 6

                            [Ei*(x,y).U(x-xo-∆.u) * g*(x,y)] dxdy (14)

where * denotes the complex conjugate.  We now expand the current i(u) in a Taylor series so that to a first order

i(u) = i(0) + i'(0)u (15)

where i'(0) = 

∂i

∂u
0
.  From eq. (14) it follows that

i'(0) ∝

−∆ ∫
-∞

∞
 ∫
-∞

∞
 




∫
-∞

∞
 ∫
-∞

∞
 δ(x''-xo)E1(x'',y' ')g(x-x'',y-y'')dx''dy'' x

       




∫
-∞

∞
 ∫
-∞

∞
 E1*(x',y')U(x'-xo)g*(x-x',y-y')dx'dy'  dxdy + cc. (16)

 where cc denotes the complex conjugate.

Using the sifting property of the delta function, this may be written as

i'(0) ∝ −∆ ∫
-∞

∞
 ∫
-∞

∞
 




∫
-∞

∞
 E1(xo,y'')g(x-xo,y-y' ') dy' ' x





∫
-∞

∞
 ∫
-∞

∞
 E1*(x',y')U(x'-xo)g*(x-x',y-y')dx'dy'  dxdy + cc. (17)



We now first perform the integration Ia over x and y:
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Ia = ∫
-∞

∞
 ∫
-∞

∞
 g(x-xo,y-y'')g*(x-x',y-y') dxdy. (18)

Substituting v = x-xo, w = y-y'', we find readily that this may be written as

Ia = ∫
-∞

∞
 ∫
-∞

∞
 g(v,w)g*[v-(x'-xo),w-(y'-y'')] dxdy. (19)

Defining the (two-dimensional) autocorrelation function of g as

ga(ξ,ψ) = ∫
-∞

∞
 ∫
-∞

∞
 g(v,w)g*(v-ξ,w-ψ) dvdw. (20)

(17) may be written as

i'(0) ∝ −∆ ∫
-∞

∞
 ∫
-∞

∞
 








∫
-∞

∞
E1(xo,y'')ga(x'-xo,y'-y' ')dy''  x

E1*(x',y')U(x'-xo) dx'dy' + cc. (21)

Gaussian Analysis

` In the following, eq.(21) for the first harmonic current will be applied to the case where a gaussian

illuminating beam is used in conjunction with (for simplicity) a gaussian aperture.

` The gaussian illuminating field is described as



8

Ei(x,y) = Aexp(-x2/wo2) exp(-y2/wo2) (22)

and the gaussian amplitude filter in the focal plane (at the photodetector) is given by

G(fx,fy) = exp(-fx2/f12) exp(-fy2/f22) (23)

where f1 and f2 are the mask dimensions.  Substituting eqs (22) and (23) into (21), we find, after tedious

calculus, that

i'(0) ∝ -∆|A|2 π
2 wo 

(πwof1/ 2)

1+(πwof1/ 2)2
 

(πwof2)

 1+(πwof2)2
. (24)

To shed some light on this equation, it has been graphed using Maple V and is shown in Figure 1 as a

dashed line.
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Fig. 1.  First-harmonic Gaussian mask (theoretical) plotted versus a rectangular slit (experimental).



To check the predictive power of eq. (24) we performed a physical experiment as follows.  A knife edge

vibrating at a frequency of 284 Hz was placed in the center of a laser beam, and the modulated light then collected

by a lens and focused onto a variable width rectangular slit (0 - 500 µm) in front of a photodetector.  The beam

diameter of the focused spot was about 230 µm.  The first harmonic of the current was detected with a lock-in

amplifier.  Figure 1 depicts the experimental data plotted as a solid line. As would be expected, the first harmonic

increases streadily and then starts leveling off when the slit is around 230 µm (same size as the focused beam)

where incoherent operation is approached. The best fit between the two curves was obtained when the center to

1/e width of the Gaussian slit was chosen to equal 76 % of the actual physical width of the rectangular aperture.
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2. Incoherent and Coherent Operation

Incoherent Operation

The incoherent mode of operation is characterized by an infinitely large photodetector accepting all

propagating waves that pass the knife edge. (We do not consider evanescent waves in our analysis.) Our model

consists of a vibrating knife edge and object positioned in the same plane in the beam, before the Fourier

transforming lens.  The position of the knife edge at any instance of time is again given by x(t) = xo + ∆cos(ωt).

The time varying current from the photodetector may be written from (7) and (12) as

i(t) ∝ ∫
-∞

∞
  ∫

x(t)

∞
 |Ei(x,y)|2dxdy  ∝ ∫

-∞

∞
  ∫

x(t)

∞
 I i(x,y)dxdy (25)

where Ii(x,y) ∝ |Ei(x,y)|2 denotes intensity.  After separating (25) into its constant and harmonic currents,

applying a change of variables and expanding into a Taylor series about xo with ∆ assumed small, we find:

i(t) ∝   io+ a1.cos(ωt) + a2.cos(2ωt) + a3.cos(3ωt)

                                                         + a4.cos(4ωt) + a5.cos(5ωt) (26)

where



io = ∫
-∞

∞
 ∫
xo

∞
 I 1(x,y)dxdy (27) 10

and

an ∝ ∆n-1 
⌡

⌠

-∞

∞

 

∂n-1Ii(x,y)

∂xn-1
xo

dy   for n = 1,2,3... (28)

where for all harmonics we have ignored powers of ∆ higher than the first one encountered. It is interesting that

expressions similar to (26) and (28) are found in ref [6] where the authors use a periodically deflected beam to

scan an object.

Eqs (26) and (28) were checked by the following experiment.  A vibrating knife edge is scanned through a

Gaussian laser beam and a large area diameter photodiode is placed as close as possible to the knife edge, in order

to pick up all the light.  An appropriate bandpass filter is then employed to detect only the light time-modulated by

the knife edge.  Shown in Figures 2a-2e are plots generated for the first through fifth  harmonics.  Phase of the

current is shown only for the first and second harmonic because of  instrumental limitations.

It is clear that successively higher derivatives of the Gaussian beam shape are generated (note that negative

values are necessarily displayed as positive, with indication of phase reversal in the case of the first and second

harmonic only).
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Fig. 2.  Gaussian traced out by signal at a) ω , b) 2ω , c) 3ω , d) 4ω , e) 5ω

 Coherent Operation

The case of coherent operation is similar to incoherent operation except that a pinhole detector is assumed

to be placed on-axis in the far field of the transmitted radiation (or, alternatively in the focal plane of an infinitely

large collecting lens).  We then have, from (11) and (12)
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i(t) ∝ | ∫
-∞

∞
  ∫

x(t)

∞
 E i(x,y)dxdy |2. (29)

After expanding this in a Taylor series about xo, similar to the procedure for eq. (26), but this time only up to the

first order for simplicity, it can be shown that

i(t) ∝  io+ a.cos(ωt). (30)

In terms of the quantities

Ao = ∫
-∞

∞
 ∫
xo

∞
Ei(x,y)dxdy (31)

Aω  =   ∫
-∞

∞
Ei(xo,y)dy (32)

we find

io = AoAo* - 
1
2 |Aω |2∆2 - 

1
4 ∆2 (AoA2ω* + Ao*A2ω) (33)

a =  - (AoAω* + Ao*Aω)∆ = -2Re{AoAω*}∆. (34)

4. Phase Detection



The parameters A0 and Aω , necessary to express the DC and first harmonic components of the modulated

light are given by eqs (31) and (32).  If the phases of Aο and Aω  above are indicated by φο and φω , then
14

Ao = |Ao|exp(jφo) (35)

Aω  = |Aω |exp(jφω). (36)

With the first time harmonic component of the current from the coherent operation given by eq. (34), we then have

  a = -2 |AoAω | cos (φω-φo)∆. (37)

Thus the coherent mode offers the possibility of measuring the phase between the ω-labeled light [i.e the

light in the vibration zone of the knife edge, eq. (32)] and the integrated surrounding field as defined by eq. (31).

Note that for maximum usefulness, the reference phase, φo, should be π/2 in eq. (37) so that cos (φω-φo) = sin

(φω).  For small φω  (as is the case for many phase objects of interest) we then have sin (φω) ∝ φω  and linear

operation results.

In what follows we shall examine (34)  in more detail by applying it to the field behind a lens.

Lens as Phase Object

If a lens is scanned through the vibrating knife edge, assumed to be in the same plane, the effective field Ei

to be scanned can be represented by

Ei(x) = exp(-x2/wo2).exp



-jk(x-xs)2

2F (38)



where we will consider one-dimensional operation and ignore y dependence.  The first term represents the

gaussian illuminating beam with wo being the beam waist.  The second term results from scanning the lens

towards the knife edge, where xs is the distance scanned and F is the focal length of the lens.  Assuming xo = 0,

we then find from (31)
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Aο = ⌡
⌠

0

∞

 exp(-x2/wo2).exp



-jk(x-xs)2

2F  dx. (39)

Similarly we find from (32), with xo = 0

Aω  = exp



-jk(xs)2

2F . (40)

Hence

AoAω* = ⌡
⌠

0

∞

 exp(-x2/wo2).exp



-jkx2

2F  +  
jkxxs

F  dx (41)

and with (34), the amplitude 'a' of the first harmonic becomes

a ∝ Re{AoAω*} ∝ ⌡
⌠

0

∞

 exp(-u2).cos



-kwo2u2

2F  +  
kwo2uv

F  du (42)

where u = x/wo and v = xs/wo.
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Fig. 3.  Graph of expression (42); the first harmonic with 300-mm lens.

  For F = 300 mm and F = 2500 mm, eq. (42) is graphed using Maple V,  as shown in Figs. 3 and 4.  Note

that for the 300 mm lens the change in phase of the integrated surrounding field when scanned, produces some

complex interference effects on the right hand side of the curve.  Also the peak is shifted off-center. In Fig. 4

which refers to the weaker 2500 mm lens, the interference effects between Aω  and Ao are much less pronounced,

and also the off-center shift is much less.
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Fig. 4.  Graph of expression (42); the first harmonic with a 2500-mm lens

An experimental setup to check eq. (42) is depicted in Figure 5.  The phase object is 2-3 mm away from

the knife edge (ideally they are in the same plane).  The radiation incident upon the phase object is the light

modulated by the knife edge plus the reference or background light not modulated by the knife edge.
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Fig. 5  Experimental setup for the scanning lens as a phase object.

A 220 mm spherical lens is used to collect the light containing phase information passing the phase object,

and focus it onto a 0.1 mm vertical slit.  The focused spot has a radius of about 114 µm.  Figs. 6 and 7 show

experimental results for the 300 mm and the 2500 mm lens respectively.  Because of difficulties in visually

centering the slit, the center of the lens in the 300 mm case is not well known.  It can be seen that the shapes of the

curves in Fig. 6 and 7 are strikingly similar to those in Figs 3 and 4 if in the latter, negative peaks are flipped

positive.
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Fig. 6.  First-harmonic scan of the 300-mm lens.
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Fig. 7.  First-harmonic scan of the 2500-mm lens.

5. Discussion

In the incoherent mode, some interesting edge detection features are realized by detecting higher harmonics

of the current induced by the vibrating edge.These are similar to the ones utilized in wobbling-beam microscopy

[6], which, as our scheme, offers electronically variable resolution.

In the coherent mode, the relative phase of the object affects the amplitude of the detected signal.

"Relative"  means relative to the phase of the surrounding object not directly under the vibrating knife edge.

Unless this surrounding phase averages out, the measurement of the local phase is of limited value. There do exist

objects that average out the phase: a phase grating with multiple periods covered by the beam is one example.

However, in general it would be advisable to have a larger and stronger part of the beam fall outside the object. In

that case any reference phase contributions from the object are overridden by the stronger reference signal that

derives from outside the object. Alternatively, a completely separate reference beam may be used, but then the

advantages of a common-path configuration are lost.



Future research into use of the coherent mode for phase microscopy  should address such problems in

detail.  The present investigation is only meant to present the fundamental principles and assess initial overall

feasibility.
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