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7. PROPAGATION OF THE OPTICAL FIELD vs.3.1

PROPAGATION BY PLANE WAVES
with circular symmetry
PROPAGATION BY SPHERICAL WAVES
with circular symmetry
THE FAR FIELD

PROPAGATION BY PLANE WAVES

The fundamental problem is the following:

Given the field E1 at z 1 , calculate the field E 2  at z 2 .

Ignoring evanescent waves S6 ,the solution of the problem is along
the following lines:

• Decompose the field E1 into a local plane wave spectrum S11  A1

according to

A1(kx,ky)  = ∫
- ∞

∞
  ∫

- ∞

∞
 E 1(x,y)exp(-jkxx - jkyy)dxdy (7.1)

• Propagate all plane waves from z1 to z2 by means of the
propagator S11  H  according to

A2(kx,ky) = H (kx,ky)A1(kx,ky) (7.2)

where, in the paraxial approximation S6 , H  is given by

H (kx,ky) ≈ exp[jk(z2-z1)]exp[-j(
kx2

2k  +
ky2

2k )(z2-z1)] (7.3)

• Sum all plane waves in the propagated spectrum A2 to give the
field E2 according to

E2(x,y) = 
1

(2π)2 ∫
- ∞

∞
 ∫

- ∞

∞
 A 2(kx,ky)exp(jkxx+jkyy)dkxdky (7.4)

http://www.icaen.uiowa.edu/~adriank/book/smroads/plane.pdf
http://www.icaen.uiowa.edu/~adriank/book/smroads/plane.pdf
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If desired we may use the notation

E1(x,y) = E(x,y,z1),  E2(x,y) = E(x,y,z2) (7.5)

A1(kx,ky) = A(Kx,ky;z1),   A2(kx,ky) = A(Kx,ky;z2) (7.6)

The sequence (7.1), (7.2) and (7.4) may be represented in shorthand
operator  S1  notation:

E2  =  F - 1 H F E 1   (7.7)

Fig. 7.1 is a symbolic representation of the operation (7.7). For
simplicity only the X and Z axes are shown.
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Fig. 7.1 Schematic representation in two dimensions of
             the propagation of an optical field by plane waves.

EX. 7.1  shows how to calculate the evolution of a Gaussian beam
according to (7.7). Examples of numerical calculation using (7.7) may
be found in S28 .

Circular symmetry

In this  case (7.7) should be written
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E2  =  B - 1 H B E 1  (7.8)

where B  represents the Fourier-Bessel transform. S11

PROPAGATION BY SPHERICAL WAVES

Starting from  (7.7), we apply the convolution property S4 of
the Fourier transform:

E2 = F- 1H F E1 = F-1 {H F E1} = F- 1  H *  F- 1F E1 = F- 1  H  * E1

(7.9)

The propagator H  being a simple multiplier, we define

h = F-1 H (7.10)

so that 7.9 becomes

E2  =  h  *  E1 (7.11)

where, with (7.3) and (7.10)

h = F-1 { exp[jk(z2-z1)]exp[-j(
kx2

2k  +
ky2

2k )(z2-z1)]} =

exp[jk(z2-z1)] (1/2π) 2×

∫
- ∞

∞
 exp[-j(

kx2

2k  +
ky2

2k )(z2-z1) +jkxx + jkyy] dkxdky (7.12)

With the relation REF.1

∫
- ∞

∞
 exp(-p2u2 ± qu) du = 

π
p exp(

q2

4p2)

   provided p ≠ 0 and Re(p2) ≥ 0. (7.13)

http://www.icaen.uiowa.edu/~adriank/book/smroads/plane.pdf
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where u = kx or ky , p2 = j(z2 - z 1)/2k, and  q = jx or jy, we find
readily from (7.12) that

h =  
k

2π
. 1
j(z2-z1)

.exp[jk(z2-z1)].exp[
jk(x2+y2)
2(z2  -z1)] (7.14)

With z1= 0, z2 = z and k/2π = λ we may write (7.14) as

 h  =   
1

j λz
.exp[jkz].exp[

jk(x2+y2)
2z ] (7.15)

which is the form most often encountered in the literature. The
function h is sometimes called the impulse response S5  of free
space.

Applying (7.11) to (7.15) we find

E2(x,z) = 
1

j λz
.exp[jkz] ×

         ∫
- ∞

∞
 ∫

- ∞

∞
 E 1(x',y')exp[

jk[(x-x')2+(y-y')2]
2z ] dx'dy' (7.16)

EX. 7.2 shows an application of (7.16) to the evolution of an
elliptical Gaussian beam. Examples of numerical calculation using
(7.11) may be found in S28 .

With reference to Fig. 7.2 we shall now show that the interpretation
of (7.16) is that of the propagation of the field by spherical waves
S6 .

Let point P1  of field E1, located at x'y', emit a spherical wave with
amplitude E1(x',y')dx'dy'. The contribution in point P2, at x,y, to field
E2 is then given by

dE2 ∝ E1(x',y')
expjkr12

r12
 dx'dy' (7.17)

and hence the total field E2 is
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     Fig. 7.2 Propagation of the field by spherical waves.

E2(x,y) ∝ ∫
- ∞

∞
 ∫

- ∞

∞
  E1(x',y')

exp(jkr12)
r12

 dx'dy' (7.18)

The radius r12 is given by

r12 = z2 + (x-x')2 + (y-y')2 (7.19)

Under conditions of paraxial propagation S6  we assume that the
"ray" from P1 to P2 lies close to the Z-axis in direcion. Under these
conditions |(x-x')| << |z| and |(y-y')| << |z|. Eq. (7.19) may then be
written as

r12 ≈ z + (x-x')2/2z + (y-y')2/2z (7.20)

We now substitute (7.20) into the exponential phase term exp(jkr12)
of (7.18), but the amplitude term 1/r12 , not being as sensitive as
the phase term, we approximate by 1/z. Eq, (7.18) now becomes

E2(x,z) ∝ 
1
z

.exp[jkz] ×
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                            ∫
- ∞

∞
 ∫

- ∞

∞
 E 1(x',y')exp[

jk[(x-x')2+(y-y')2]
2z ] dx'dy'  (7.21)

It is clear that, but for a constant multiplier 1/jλ, (7.21) is
identical to (7.16). Thus the propagation of the field may be
interpreted as a propagation by spherical waves. These are emitted
by virtual sources __ so-called Huyghens sources __ P1, located
upstream to cause the complete field downstream. The Huyghens
sources are 900 out of phase with the field, as indicated by the
factor 1/j.

The basic idea of propagation by spherical waves is due to Huyghens
REF. 7.2 , who originated the wave theory of light. Mathematical

formulations similar to (7.21) were first derived by Kirchhoff and
later by Rayleigh- Sommerfeld. Some of these formalisms have an
additional term, called the obliquity factor, multiplying the
integrand in (7.21). For the paraxial approximation used here such
factors are equal to unity. More information about the Kirchoff and
Rayleigh-Sommerfeld theories may be found in REF. 7.3 .

Circular symmetry

We start from (7.8):

E2 = B- 1H B  E1 (7.22)

where E1 = E1(r), E2 = E2(r), r = x2+y2 , B  is the Fourier - Bessel
transform S11 , and H  is the propagator given by

H  = exp(jkz)exp(jkt2z/2k) (7.23)

where we have written kt2 = kx +ky2

Eq. (7.22) becomes

E2(r) = exp(jkz) ×

       ∫
0

∞
 ∫

0

∞
 E 1(r')ktr'Jo(ktr')J0(ktr)exp(-jkt2z/2k)dktdr' (7.24)

http://www.icaen.uiowa.edu/~adriank/book/smroads/plane.pdf
http://www.icaen.uiowa.edu/~adriank/book/smroads/plane.pdf
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We now integrate over kt by using the relation REF.1

∫
0

∞
 J p(ax)Jp(bx)exp(-q2x2)xdx =

                     
1

2q2exp(-
a2+b2

4q2 )Ip(
ab

2q2)

where

I p(z) = j- pJp(jz), if p is an integer. (7.25)

In our case a = r, b = r' , q2= jz/2k, p = 0.

We find

E2(r) = 
2π
j λz

 exp(jkz +
jkr2

2z ) ×

                  ∫
0

∞
 E 1(r')r'Jo(

krr'
z )exp(

jkr'2

2z )dr' (7.26)

EX. 7.3  uses (7.26) to show that the field E1(r) = Jo(Kr) does not

spread by diffraction; it forms a diffraction-free beam S13 .

The term multiplying the integral in (7.26) may, to within the
paraxial approximation,  be written as

2π
j λ

 
exp(jkR)

R  where R is the distance from the origin to a point

at r in the plane of E2, as shown in Fig. 7.3.

The exponential term may be interpreted as a spherical wave
originating at the origin. In this interpretation the field E2 is thus
essentially a spherical wave, with a (circularly symmetric) complex
amplitude distribution across its wavefront, given by the integral
following the spherical wave term.
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             Fig. 7.3 Illustrating R ≈ r2+z2 ≈ z + r2/2z

THE FAR FIELD

When z → ∞ we speak of the far field or Fraunhofer field  (Fraunhofer
diffraction). The expression for this field is much simplified as we
will now show. We start from (7.7):

E2 = F-1 H F  E1 = F- 1  H  A1 =

exp(jkz)
(2π) 2  ∫

- ∞

∞
 ∫

- ∞

∞
 A 1(kx,ky) exp(-j

kx2

2z +jkx- j
ky2

2z +jky)dkxdky

(7.27)

Completing the squares in kx and ky  in (7.27), we write

E2 = 
exp(jkz+jk

x2+y2

2z )

(2π) 2  ×

 ∫
- ∞

∞
 ∫

- ∞

∞
 A 1(kx,ky) exp[-j

z
2k(kx-

kx
z )2]exp[-j

z
2k(ky-

ky
z )2]dkxdky

(7.28)
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Now, when z → ∞, the exponential terms in the argument vary
infinitely fast everywhere but in the points kx=kx/z and ky= ky/z.
Thus nowhere but in the infinitesimal neighborhood of these points
is there a net contribution from A1 to the integral S10 . This
contribution is given by

A1(kx=kx/z,ky=ky/z) ×

                         ∫
- ∞

∞
 ∫

- ∞

∞
 exp[-j

z
2k(kx-

kx
z )2]exp[-j

z
2k(ky-

ky
z )2]dkxdky =

A1(kx=kx/z,ky=ky/z) ×

                                    ∫
- ∞

∞
 ∫

- ∞

∞
 exp[-j

z
2kkx2]exp[-j

z
2kky2]dkxdky = 

2kπ
j z

(7.29)

by using the relation REF.1

∫
- ∞

∞
 exp(-p2u2 ± qu) du = 

π
p exp(

q2

4p2)

   provided p ≠ 0 and Re(p2) ≥ 0.

Substituting (7.29) into (7.28), we find finally, for z → ∞

E2 =  
1

j λz
exp(jkz +jk

x2+y2

2z )A1(kx=kx/z,ky=ky/z)

(7.30)

The first two terms in  (7.30), as in (7.26), represent a spherical
wave centered on the origin. To find the field E2, the wavefront of
this wave must be multiplied by the complex amplitude distribution
A1. In other words, the point x,y has an amplitude proportional to the
amplitude of the plane wave at kx = kx/z and ky = ky/z. This is  the
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plane wave propagating at angles φ ≈ kx/k = x/z and φ' ≈ ky/k = y/z ,
i.e the plane wave whose wave vector is directed along the line from
the origin to the point P at x,y. Thus, when compensated for by the
spherical wave phase term, the far field E 2 at P measures directly
the amplitude of the angular plane wave spectrum in the direction
OP, where O is the origin and P the observation point.  Fig. 7.4
illustrates this interpretation.

P

X

Y

ZO

X

Y
φ

φ’

z →  ∞

            FIG. 7.4 The far field as angular spectrum

Because A1 = F E1, eq. (7.30) may also be written as

E2 =  
1

j λz
exp(jkz +jk

x2+y2

2z )S  (kx/z,ky/z)F E 1  (7.31)

where S is the symbol exchange operator S1  which indicates that in
the Fourier transform F E1, kx must be replaced by kx/z and ky by
ky/z. Equation (7.31) is the defining equation of Fraunhofer
diffraction S16 . The mathematical analysis we have performed to

calculate the limiting value of E2 for z → ∞ is essentially what is

called the stationary phase method S10

EX. 7.1
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Propagation of an elliptical Gaussian beam. Plane 
wave method

For simplicity we assume that z1 = 0 and z2 = z. For an elliptical
Gaussian beam the field E1at z=0 is given by

E(x,y,0) = E0 exp(-x2/w12 - y2/w22) =

E0 exp(-x2/w12) exp(- y2/w22) (7.1.1)

The local plane wave spectrum A1 at z=0 of this field has been
calculated in EX. 11.1 .

A(kx,ky;0) = E0πw1w2exp(-kx2w12/4 - ky2w22/4) (7.1.2)

The local plane wave spectrum A2 at z is found by multiplying A1
with

H (kx,ky) ≈ exp[jkz]exp[-j(
kx2

2k  +
ky2

2k )z] (7.1.3)

so that A2 =

A(kx.ky;z) = E0πw1w2exp(jkz) ×

                                    exp(-kx2w12/4 - j
kx2

2k z) ×

                                             exp(-ky2w22/4 - j
ky2

2k z) (7.1.4)

The field  E2 at z may now be found by taking the Fourier transform
of (7.1.4):

E(x,y,z) = E0πw1w2 exp(jkz) ×

                       F x{exp(-kx2w12/4 - j
kx2

2k z)} ×

                                           F y{exp(-ky2w22/4 - j
ky2

2k z)} (7.1.5)

http://www.icaen.uiowa.edu/~adriank/book/smroads/plane.pdf
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where Fx and Fy are one dimensional inverse Fourier transforms in x
and y respectively. We may write

E(x,y,z) = E0πw1w2exp(jkz)  ×

1
2π ∫

- ∞

∞
 exp(-kx2w12/4 - j

kx2

2k z + jkxx)dkx ×

1
2π ∫

- ∞

∞
 exp(-ky2w22/4 - j

ky2

2k z + jkyy)dky (7.1.6)

The integrals in (7.1.6) may be solved by application of the following
formula  REF.1

∫
- ∞

∞
 exp(-p2u2 ± qu) du = 

π
p exp(

q2

4p2)

   provided p ≠ 0 and Re(p2) ≥ 0. (7.1.7)

In our case p2 = w12/4 +jz/2k  or  w22/4 + jz/2k respectively, and q
= jx or jy respectively. Applying (7.1.7) to (7.1.6) we find readily

E(x,y,z) = E0exp(jkz) ×

       
1

 1+j2z/kw12
 exp[ 

-x2

 w 12(1+ j2z/kw12)] ×

          
1

 1+j2z/kw22
 exp[ 

-y2

 w 22(1 + j2z/kw22)]  (7.1.8)

Introducing characteristic lengths,

z0x = kw12/2  and z0y = kw22/2 (7.1.9)

we may write for (7.1.8)

E(x,y,z) = E0exp(jkz) ×
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1

 1+jz/z0x
 exp[ 

-x2

 w 12(1+ jz/z0x)
] ×

                   
1

 1+jz/z0y
 exp[ 

-y2

 w 22(1 + jz/z0y)]  (7.1.10)

An alternative expression in terms of z-dependent waists, radii of
phase curvature and phase angles is given in S6 .

Fig. 7.1.1 shows a one dimensional (w2 = ∞, z 0y = ∞)  Gaussian in the
XZ plane with the amplitude normalized to unity at z=0

         

z/z0x
x/w1

0

10 0
-5

5

|E(x,0,z)

1

                                           Fig. 7.1.1

Ex. 7.2

Propagation of an elliptical Gaussian beam. Spherical
waves method

As in Ex. 7.1 the field E1 is given by

E1(x,y) = E0 exp(-x2/w02) exp(- y2/w02) (7.2.1)

Application of (7.16) gives
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E2(x,z) = 
E0
j λz

.exp[jkz] ×

         ∫
- ∞

∞
 ∫

- ∞

∞
 exp(-x'2/w12- y'2/w22)exp[

jk[(x-x')2+(y-y')2]
2z ] dx'dy'

or

E2(x,y) = 
E0
j λz

.exp[jkz +jk(x2+y2)/2z] ×

              ∫
- ∞

∞
 exp[-x'2(1/w12-jk/2z) - jkxx'/2z]dx' ×

∫
- ∞

∞
 exp[-y'2(1/w22-jk/2z) - jkyy''/2z]dy' (7.2.2)

The two integrals may again be solved by application of the relation
 REF.1

∫
- ∞

∞
 exp(-p2u2 ± qu) du = 

π
p exp(

q2

4p2)

   provided p ≠ 0 and Re(p2) ≥ 0. (7.2.3)

with u = x' or y', p2= (1/w12 -jk/2z) or (1/w22 - jk/2z) and
q = jkx/2z or jky/2z

After some algebra we find

E2(x,y) = E0exp(jkz) ×

       
1

 1+j2z/kw12
 exp[ 

-x2

 w 12(1+ j2z/kw12)] ×

          
1

 1+j2z/kw22
 exp[ 

-y2

 w 22(1 + j2z/kw22)] (7.2.4)
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which is identical to (7.1.8) which was calculated by the plane wave
propagation method.

EX. 7.3

Propagation of a diffraction-free beam

If in (7.26) we substitute E2(r') = J0(Kr') where K is a real constant,
we find

E2(r) = 
2π
j λz

 exp(jkz +
jkr2

2z ) ×

                  ∫
0

∞
 J 0(Kr')r'Jo(

krr'
z )exp(

jkr'2

2z )dr' (7.3.1)

We now use the relation Ref.1

∫
0

∞
 J p(ax)Jp(bx)exp(-q2x2)xdx =

                     
1

2q2exp(-
a2+b2

4q2 )Ip(
ab

2q2) (7.3.2)

where

I p(z) = j- pJp(jz), if p is an integer. (7.3.3)

In our case x = r', p = 0, a = K, b = kr/z, and q2 = -jk/2z

By substituting these values into (7.3.2) we find for the integral the
value

jzλ
2π exp[-j

z
2k (K2 + 

k2r2

z2 )]J0(Kr)

and hence for E2:
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E2(r) = exp[j(k- 
K2

2k)z] Jo(Kr) (7.3.4)

Hence |E2(r)| = |E1(r)| = |Jo(Kr)|, and the beam is diffraction-free.
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