PROPAGATION BY PLANE WAVES
with circular symmetry
PROPAGATION BY SPHERICAL WAVES
with circular symmetry
THE FAR FIELD

PROPAGATION BY PLANE WAVES

The fundamental problem is the following:
Given the field E_{1} at z_{1}, calculate the field E_{2} at z_{2}.
Ignoring evanescent waves S6, the solution of the problem is along the following lines:

- Decompose the field E_{1} into a local plane wave spectrum S11 A_{1} according to

$$
\begin{equation*}
A_{1}\left(k_{x}, k_{y}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{1}(x, y) \exp \left(-j k_{x} x-j k_{y} y\right) d x d y \tag{7.1}
\end{equation*}
$$

- Propagate all plane waves from z_{1} to z_{2} by means of the propagator S11 H according to

$$
\begin{equation*}
A_{2}\left(k_{x}, k_{y}\right)=H\left(k_{x}, k_{y}\right) A_{1}\left(k_{x}, k_{y}\right) \tag{7.2}
\end{equation*}
$$

where, in the paraxial approximation $\underline{\mathrm{S6}}, \mathrm{H}$ is given by

$$
\begin{equation*}
H\left(k_{x}, k_{y}\right) \approx \exp \left[j k\left(z_{2}-z_{1}\right)\right] \exp \left[-j\left(\frac{k_{x}^{2}}{2 k}+\frac{k_{y}^{2}}{2 k}\right)\left(z_{2}-z_{1}\right)\right] \tag{7.3}
\end{equation*}
$$

- Sum all plane waves in the propagated spectrum A_{2} to give the field E_{2} according to

$$
\begin{equation*}
E_{2}(x, y)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_{2}\left(k_{x}, k_{y}\right) \exp \left(j k_{x} x+j k_{y} y\right) d k_{x} d k_{y} \tag{7.4}
\end{equation*}
$$

If desired we may use the notation

$$
\begin{align*}
& E_{1}(x, y)=E\left(x, y, z_{1}\right), \quad E_{2}(x, y)=E\left(x, y, z_{2}\right) \tag{7.5}\\
& A_{1}\left(k_{x}, k_{y}\right)=A\left(K_{x}, k_{y} ; z_{1}\right), \quad A_{2}\left(k_{x}, k_{y}\right)=A\left(K_{x}, k_{y} ; z_{2}\right) \tag{7.6}
\end{align*}
$$

The sequence (7.1), (7.2) and (7.4) may be represented in shorthand operator S1 notation:

$$
\begin{equation*}
E_{2}=F^{-1} \mathrm{HFF}_{1} \tag{7.7}
\end{equation*}
$$

Fig. 7.1 is a symbolic representation of the operation (7.7). For simplicity only the X and Z axes are shown.

Fig. 7.1 Schematic representation in two dimensions of the propagation of an optical field by plane waves.

EX. 7.1 shows how to calculate the evolution of a Gaussian beam according to (7.7). Examples of numerical calculation using (7.7) may be found in S28.

Circular symmetry
In this case (7.7) should be written

$$
\begin{equation*}
E_{2}=B^{-1} H B E_{1} \tag{7.8}
\end{equation*}
$$

where B represents the Fourier-Bessel transform. S11

PROPAGATION BY SPHERICAL WAVES

Starting from (7.7), we apply the convolution property 54 of the Fourier transform:

$$
\begin{equation*}
\mathrm{E}_{2}=\mathrm{F}^{-1} \mathrm{HFE} \mathrm{E}_{1}=\mathrm{F}^{-1}\left\{\mathrm{HF} \mathrm{E}_{1}\right\}=\mathrm{F}^{-1} \mathrm{H} * \mathrm{~F}^{-1} \mathrm{~F} \mathrm{E}_{1}=\mathrm{F}^{-1} \mathrm{H} * \mathrm{E}_{1} \tag{7.9}
\end{equation*}
$$

The propagator H being a simple multiplier, we define

$$
\begin{equation*}
\mathrm{h}=\mathrm{F}^{-1} \mathrm{H} \tag{7.10}
\end{equation*}
$$

so that 7.9 becomes

$$
\begin{equation*}
\mathrm{E}_{2}=\mathrm{h} * \mathrm{E}_{1} \tag{7.11}
\end{equation*}
$$

where, with (7.3) and (7.10)

$$
\begin{align*}
& h=F^{-1}\left\{\exp \left[j k\left(z_{2}-z_{1}\right)\right] \exp \left[-j\left(\frac{k_{x}^{2}}{2 k}+\frac{k_{y}^{2}}{2 k}\right)\left(z_{2}-z_{1}\right)\right]\right\}= \\
& \exp \left[j k\left(z_{2}-z_{1}\right)\right](1 / 2 \pi)^{2} x \\
& \int_{-\infty}^{\infty} \exp \left[-j\left(\frac{k_{x}^{2}}{2 k}+\frac{k_{y}^{2}}{2 k}\right)\left(z_{2}-z_{1}\right)+j k_{x} x+j k_{y} y\right] d k_{x} d k_{y} \tag{7.12}
\end{align*}
$$

With the relation REF. 1

$$
\begin{align*}
& \int_{-\infty}^{\infty} \exp \left(-p^{2} u^{2} \pm q u\right) d u=\frac{\sqrt{\pi}}{p} \exp \left(\frac{q^{2}}{4 p^{2}}\right) \\
& \text { provided } p \neq 0 \text { and } \operatorname{Re}\left(p^{2}\right) \geq 0 . \tag{7.13}
\end{align*}
$$

where $u=k_{x}$ or $k_{y}, p^{2}=j\left(z_{2}-z_{1}\right) / 2 k$, and $q=j x$ or $j y$, we find readily from (7.12) that

$$
\begin{equation*}
h=\frac{k}{2 \pi} \cdot \frac{1}{j\left(z_{2}-z_{1}\right)} \cdot \exp \left[j k\left(z_{2}-z_{1}\right)\right] \cdot \exp \left[\frac{j k\left(x^{2}+y^{2}\right)}{2\left(z_{2}-z_{1}\right)}\right] \tag{7.14}
\end{equation*}
$$

With $z_{1}=0, z_{2}=z$ and $k / 2 \pi=\lambda$ we may write (7.14) as

$$
\begin{equation*}
h=\frac{1}{j \lambda z} \cdot \exp [j k z] \cdot \exp \left[\frac{j k\left(x^{2}+y^{2}\right)}{2 z}\right] \tag{7.15}
\end{equation*}
$$

which is the form most often encountered in the literature. The function h is sometimes called the impulse response $\mathrm{S5}$ of free space.

Applying (7.11) to (7.15) we find

$$
\begin{align*}
& E_{2}(x, z)=\frac{1}{j \lambda z} \cdot \exp [j k z] \times \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{1}\left(x^{\prime}, y^{\prime}\right) \exp \left[\frac{j k\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right]}{2 z}\right] d x^{\prime} d y^{\prime} \tag{7.16}
\end{align*}
$$

EX. 7.2 shows an application of (7.16) to the evolution of an elliptical Gaussian beam. Examples of numerical calculation using (7.11) may be found in $\underline{\underline{28} .}$

With reference to Fig. 7.2 we shall now show that the interpretation of (7.16) is that of the propagation of the field by spherical waves S6.

Let point P_{1} of field E_{1}, located at $x^{\prime} y^{\prime}$, emit a spherical wave with amplitude $E_{1}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}$. The contribution in point P_{2}, at x, y, to field E_{2} is then given by

$$
\begin{equation*}
d E_{2} \propto E_{1}\left(x^{\prime}, y^{\prime}\right) \frac{\operatorname{expj} r_{12}}{r_{12}} d x^{\prime} d y^{\prime} \tag{7.17}
\end{equation*}
$$

and hence the total field E_{2} is

Fig. 7.2 Propagation of the field by spherical waves.

$$
\begin{equation*}
E_{2}(x, y) \propto \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{1}\left(x^{\prime}, y^{\prime}\right) \frac{\exp \left(j k r_{12}\right)}{r_{12}} d x^{\prime} d y^{\prime} \tag{7.18}
\end{equation*}
$$

The radius r_{12} is given by

$$
\begin{equation*}
r_{12}=\sqrt{z^{2}+\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}} \tag{7.19}
\end{equation*}
$$

Under conditions of paraxial propagation S6 we assume that the "ray" from P_{1} to P_{2} lies close to the Z -axis in direcion. Under these conditions $\left|\left(x-x^{\prime}\right)\right| \ll|z|$ and $\left|\left(y-y^{\prime}\right)\right| \ll|z|$. Eq. (7.19) may then be written as

$$
\begin{equation*}
r_{12} \approx z+\left(x-x^{\prime}\right)^{2} / 2 z+\left(y-y^{\prime}\right)^{2} / 2 z \tag{7.20}
\end{equation*}
$$

We now substitute (7.20) into the exponential phase term exp(jkr en_{12}) of (7.18), but the amplitude term $1 / r_{12}$, not being as sensitive as the phase term, we approximate by $1 / z$. Eq, (7.18) now becomes

$$
E_{2}(x, z) \propto \frac{1}{z} \cdot \exp [j k z] \times
$$

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{1}\left(x^{\prime}, y^{\prime}\right) \exp \left[\frac{j k\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right]}{2 z}\right] d x^{\prime} d y^{\prime} \tag{7.21}
\end{equation*}
$$

It is clear that, but for a constant multiplier $1 / \mathrm{j} \lambda,(7.21)$ is identical to (7.16). Thus the propagation of the field may be interpreted as a propagation by spherical waves. These are emitted by virtual sources _- so-called Huyghens sources _- P_{1}, located upstream to cause the complete field downstream. The Huyghens sources are 90° out of phase with the field, as indicated by the factor $1 / \mathrm{j}$.

The basic idea of propagation by spherical waves is due to Huyghens REF. 7.2, who originated the wave theory of light. Mathematical formulations similar to (7.21) were first derived by Kirchhoff and later by Rayleigh- Sommerfeld. Some of these formalisms have an additional term, called the obliquity factor, multiplying the integrand in (7.21). For the paraxial approximation used here such factors are equal to unity. More information about the Kirchoff and Rayleigh-Sommerfeld theories may be found in REF. 7.3.

Circular symmetry

We start from (7.8):

$$
\begin{equation*}
E_{2}=B^{-1} H B E_{1} \tag{7.22}
\end{equation*}
$$

where $E_{1}=E_{1}(r), E_{2}=E_{2}(r), r=\sqrt{x^{2}+y^{2}}, B$ is the Fourier-Bessel transform S11, and H is the propagator given by

$$
\begin{equation*}
\mathrm{H}=\exp (j k z) \exp \left(j k_{t}^{2} z / 2 k\right) \tag{7.23}
\end{equation*}
$$

where we have written $k_{t}{ }^{2}=k_{x}+k_{y}{ }^{2}$
Eq. (7.22) becomes

$$
\begin{align*}
& E_{2}(r)=\exp (j k z) \times \\
& \int_{0}^{\infty} \int_{0}^{\infty} E_{1}\left(r^{\prime}\right) k_{t} r^{\prime} J o\left(k_{t} r^{\prime}\right) J o\left(k_{t} r\right) \exp \left(-j k_{t}{ }^{2} z / 2 k\right) d k_{t} d r^{\prime} \tag{7.24}
\end{align*}
$$

We now integrate over k_{t} by using the relation REF. 1

$$
\begin{aligned}
& \int_{0}^{\infty} J p(a x) J p(b x) \exp \left(-q^{2} x^{2}\right) x d x= \\
& \frac{1}{2 q^{2}} \exp \left(-\frac{a^{2}+b^{2}}{4 q^{2}}\right) I_{p}\left(\frac{a b}{2 q^{2}}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
I_{p}(z)=j^{-p} J_{p}(j z) \text {, if } p \text { is an integer. } \tag{7.25}
\end{equation*}
$$

In our case $a=r, b=r^{\prime}, q^{2}=j z / 2 k, p=0$.
We find

$$
\begin{align*}
E_{2}(r)= & \frac{2 \pi}{j \lambda z} \exp \left(j k z+\frac{j k r^{2}}{2 z}\right) \times \\
& \int_{0}^{\infty} E_{1}\left(r^{\prime}\right) r^{\prime} J o\left(\frac{k r r^{\prime}}{z}\right) \exp \left(\frac{j k r^{\prime 2}}{2 z}\right) d r^{\prime} \tag{7.26}
\end{align*}
$$

EX. 7.3 uses (7.26) to show that the field $E_{1}(r)=J_{0}(K r)$ does not spread by diffraction; it forms a diffraction-free beam S13.

The term multiplying the integral in (7.26) may, to within the paraxial approximation, be written as

$$
\frac{2 \pi}{j \lambda} \frac{\exp (j k R)}{R} \text { where } R \text { is the distance from the origin to a point }
$$

at r in the plane of E_{2}, as shown in Fig. 7.3.
The exponential term may be interpreted as a spherical wave originating at the origin. In this interpretation the field E_{2} is thus essentially a spherical wave, with a (circularly symmetric) complex amplitude distribution across its wavefront, given by the integral following the spherical wave term.

Fig. 7.3 Illustrating $R \approx \sqrt{r^{2}+z^{2}} \approx z+r^{2} / 2 z$

THE FAR FIELD

When $z \rightarrow \infty$ we speak of the far field or Fraunhofer field (Fraunhofer diffraction). The expression for this field is much simplified as we will now show. We start from (7.7):

$$
\begin{align*}
& E_{2}=F-1 \text { HF } E_{1}=F^{-1} H A_{1}= \\
& \frac{\exp (j k z)}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_{1}\left(k_{x}, k_{y}\right) \exp \left(-j \frac{k_{x}{ }^{2}}{2 z}+j k x-j \frac{k_{y} y^{2}}{2 z}+j k y\right) d k_{x} d k_{y} \tag{7.27}
\end{align*}
$$

Completing the squares in k_{x} and k_{y} in (7.27), we write

$$
\begin{align*}
& E_{2}=\frac{\exp \left(j k z+j k \frac{x^{2}+y^{2}}{2 z}\right)}{(2 \pi)^{2}} \times \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_{1}\left(k_{x}, k_{y}\right) \exp \left[-j \frac{z}{2 k}\left(k_{x}-\frac{k x}{z}\right)^{2}\right] \exp \left[-j \frac{z}{2 k}\left(k_{y}-\frac{k y}{z}\right)^{2}\right] d k_{x} d k_{y} \tag{7.28}
\end{align*}
$$

Now, when $z \rightarrow \infty$, the exponential terms in the argument vary infinitely fast everywhere but in the points $k_{x}=k x / z$ and $k_{y}=k y / z$. Thus nowhere but in the infinitesimal neighborhood of these points is there a net contribution from A_{1} to the integral $\underline{\underline{S 10}}$. This contribution is given by

$$
\begin{aligned}
& A_{1}\left(k_{x}=k x / z, k_{y}=k y / z\right) \times \\
& \qquad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[-j \frac{z}{2 k}\left(k_{x}-\frac{k x}{z}\right)^{2}\right] \exp \left[-j \frac{z}{2 k}\left(k_{y}-\frac{k y}{z}\right)^{2}\right] d k_{x} d k_{y}=
\end{aligned}
$$

$$
\mathrm{A}_{1}\left(\mathrm{k}_{\mathrm{x}}=\mathrm{kx} / \mathrm{z}, \mathrm{~K}_{\mathrm{y}}=\mathrm{ky} / \mathrm{z}\right) \times
$$

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[-j \frac{z}{2 k} k_{x} x^{2}\right] \exp \left[-j \frac{z}{2 k} k^{2}{ }^{2}\right] d k_{x} d k_{y}=\frac{2 k \pi}{j z} \tag{7.29}
\end{equation*}
$$

by using the relation REF. 1

$$
\int_{-\infty}^{\infty} \exp \left(-p^{2} u^{2} \pm q u\right) d u=\frac{\sqrt{\pi}}{p} \exp \left(\frac{q^{2}}{4 p^{2}}\right)
$$

provided $\mathrm{p} \neq 0$ and $\operatorname{Re}\left(\mathrm{p}^{2}\right) \geq 0$.
Substituting (7.29) into (7.28), we find finally, for $z \rightarrow \infty$

$$
E_{2}=\frac{1}{j \lambda z} \exp \left(j k z+j k \frac{x^{2}+y^{2}}{2 z}\right) A_{1}\left(k_{x}=k x / z, k_{y}=k y / z\right)
$$

The first two terms in (7.30), as in (7.26), represent a spherical wave centered on the origin. To find the field E_{2}, the wavefront of this wave must be multiplied by the complex amplitude distribution A_{1}. In other words, the point x, y has an amplitude proportional to the amplitude of the plane wave at $k_{x}=k x / z$ and $k_{y}=k y / z$. This is the
plane wave propagating at angles $\phi \approx k_{x} / k=x / z$ and $\phi^{\prime} \approx k_{y} / k=y / z$, i.e the plane wave whose wave vector is directed along the line from the origin to the point P at x, y. Thus, when compensated for by the spherical wave phase term, the far field E 2 at P measures directly the amplitude of the angular plane wave spectrum in the direction OP , where O is the origin and P the observation point.

Fig. 7.4 illustrates this interpretation.

FIG. 7.4 The far field as angular spectrum

Because $A_{1}=F E_{1}$, eq. (7.30) may also be written as

$$
\begin{equation*}
E_{2}=\frac{1}{j \lambda z} \exp \left(j k z+j k \frac{x^{2}+y^{2}}{2 z}\right) S \quad(k x / z, k y / z) F E_{1} \tag{7.31}
\end{equation*}
$$

where S is the symbol exchange operator S1 which indicates that in the Fourier transform $F E_{1}, k_{x}$ must be replaced by $k x / z$ and k_{y} by ky / z. Equation (7.31) is the defining equation of Fraunhofer diffraction S16. The mathematical analysis we have performed to calculate the limiting value of E_{2} for $\mathrm{z} \rightarrow \infty$ is essentially what is called the stationary phase method S10

EX. 7.1

Propagation of an elliptical Gaussian beam. Plane wave method

For simplicity we assume that $z_{1}=0$ and $z_{2}=z$. For an elliptical Gaussian beam the field E_{1} at $\mathrm{z}=0$ is given by

$$
\begin{align*}
& E(x, y, 0)=E_{0} \exp \left(-x^{2} / w_{1}^{2}-y^{2} / w_{2}^{2}\right)= \\
& E_{0} \exp \left(-x^{2} / w_{1}^{2}\right) \exp \left(-y^{2} / w_{2}^{2}\right) \tag{7.1.1}
\end{align*}
$$

The local plane wave spectrum A_{1} at $z=0$ of this field has been calculated in EX. 11.1.

$$
\begin{equation*}
A\left(k_{x}, k_{y} ; 0\right)=E_{0} \pi w_{1} w_{2} \exp \left(-k_{x}^{2} w_{1}^{2} / 4-k_{y}^{2} w_{2}^{2} / 4\right) \tag{7.1.2}
\end{equation*}
$$

The local plane wave spectrum A_{2} at z is found by multiplying A_{1} with

$$
\begin{equation*}
H\left(k_{x}, k_{y}\right) \approx \exp [j k z] \exp \left[-j\left(\frac{k_{x}^{2}}{2 k}+\frac{k_{y}^{2}}{2 k}\right) z\right] \tag{7.1.3}
\end{equation*}
$$

so that $A_{2}=$

$$
\begin{align*}
& A\left(k_{x} \cdot k_{y} ; z\right)=E_{0} \pi w_{1} w_{2} \exp (j k z) \times \\
& \quad \exp \left(-k_{x}^{2} w_{1} 2 / 4-j \frac{k_{x}^{2}}{2 k} z\right) \times \\
& \quad \exp \left(-k y^{2} w_{2}{ }^{2} / 4-j \frac{k_{y}^{2}}{2 k} z\right) \tag{7.1.4}
\end{align*}
$$

The field E_{2} at z may now be found by taking the Fourier transform of (7.1.4):

$$
\begin{align*}
& E(x, y, z)=E_{0} \pi w_{1} w_{2} \exp (j k z) \times \\
& F_{x}\left\{\exp \left(-k_{x}^{2} w_{1} 2 / 4-j \frac{k_{x}^{2}}{2 k} z\right)\right\} \times \\
& F_{y}\left\{\exp \left(-k_{y}^{2} w_{2} 2 / 4-j \frac{k_{y}^{2}}{2 k} z\right)\right\} \tag{7.1.5}
\end{align*}
$$

where F_{x} and F_{y} are one dimensional inverse Fourier transforms in x and y respectively. We may write

$$
\begin{align*}
& E(x, y, z)=E_{0} \pi w_{1} w_{2} \exp (j k z) \times \\
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left(-k_{x}{ }^{2} w_{1} 2 / 4-j \frac{k_{x}^{2}}{2 k} z+j k_{x} x\right) d k_{x} \times \\
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left(-k y^{2} w_{2} 2 / 4-j \frac{k_{y}{ }^{2}}{2 k} z+j k_{y} y\right) d k_{y} \tag{7.1.6}
\end{align*}
$$

The integrals in (7.1.6) may be solved by application of the following formula REF. 1

$$
\begin{align*}
& \int_{-\infty}^{\infty} \exp \left(-p^{2} u^{2} \pm q u\right) d u=\frac{\sqrt{\pi}}{p} \exp \left(\frac{q^{2}}{4 p^{2}}\right) \\
& \text { provided } p \neq 0 \text { and } \operatorname{Re}\left(p^{2}\right) \geq 0 . \tag{7.1.7}
\end{align*}
$$

In our case $\mathrm{p}^{2}=\mathrm{w}_{1}{ }^{2} / 4+\mathrm{jz} / 2 \mathrm{k}$ or $\mathrm{w}_{2}{ }^{2} / 4+\mathrm{jz} / 2 \mathrm{k}$ respectively, and q $=j x$ or jy respectively. Applying (7.1.7) to (7.1.6) we find readily

$$
\begin{align*}
& E(x, y, z)=E_{0} \exp (j k z) \times \\
& \frac{1}{\sqrt{1+j 2 z / k w_{1}^{2}}} \exp \left[\frac{-x^{2}}{w_{1}^{2}\left(1+j 2 z / k w_{1}^{2}\right)}\right] \times \\
& \tag{7.1.8}\\
& \frac{1}{\sqrt{1+j 2 z / k w_{2}^{2}}} \exp \left[\frac{-y^{2}}{w_{2^{2}\left(1+j 2 z / k w_{2}^{2}\right)}}\right]
\end{align*}
$$

Introducing characteristic lengths,

$$
\begin{equation*}
z_{0 x}=k w_{1}{ }^{2} / 2 \text { and } z_{0 y}=k w_{2}^{2} / 2 \tag{7.1.9}
\end{equation*}
$$

we may write for (7.1.8)

$$
E(x, y, z)=E_{0} \exp (j k z) \times
$$

$$
\begin{align*}
& \frac{1}{\sqrt{1+j z / z_{0 x}}} \exp \left[\frac{-x^{2}}{w_{1}^{2}\left(1+j z / z_{0 x}\right)}\right] \times \\
& \frac{1}{\sqrt{1+j z / z_{0 y}}} \exp \left[\frac{-y^{2}}{w_{2}^{2}\left(1+j z / z_{0 y}\right)}\right] \tag{7.1.10}
\end{align*}
$$

An alternative expression in terms of z-dependent waists, radii of phase curvature and phase angles is given in S6.

Fig. 7.1.1 shows a one dimensional ($w_{2}=\infty, z_{0 y}=\infty$) Gaussian in the $X Z$ plane with the amplitude normalized to unity at $z=0$

Fig. 7.1.1

Ex. 7.2

Propagation of an elliptical Gaussian beam. Spherical waves method

As in Ex. 7.1 the field E_{1} is given by

$$
\begin{equation*}
E_{1}(x, y)=E_{0} \exp \left(-x^{2} / w_{0}^{2}\right) \exp \left(-y^{2} / w_{0}^{2}\right) \tag{7.2.1}
\end{equation*}
$$

Application of (7.16) gives

$$
\begin{aligned}
& E_{2}(x, z)=\frac{E_{0}}{j \lambda z} \cdot \exp [j k z] \times \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left(-x^{\prime 2} / w_{1} 2-y^{\prime 2} / w_{2}^{2}\right) \exp \left[\frac{j k\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right]}{2 z}\right] d x^{\prime} d y^{\prime}
\end{aligned}
$$

or

$$
\begin{align*}
& E_{2}(x, y)=\frac{E_{0}}{j \lambda z} \cdot \exp \left[j k z+j k\left(x^{2}+y^{2}\right) / 2 z\right] \times \\
& \int_{-\infty}^{\infty} \exp \left[-x^{\prime 2}\left(1 / w_{1} 2-j k / 2 z\right)-j k x x^{\prime} / 2 z\right] d x^{\prime} \times \\
& \int_{-\infty}^{\infty} \exp \left[-y^{\prime 2}\left(1 / w_{2}^{2}-j k / 2 z\right)-j k y y^{\prime \prime} / 2 z\right] d y^{\prime} \tag{7.2.2}
\end{align*}
$$

The two integrals may again be solved by application of the relation REF. 1

$$
\begin{equation*}
\int_{-\infty}^{\infty} \exp \left(-p^{2} u^{2} \pm q u\right) d u=\frac{\sqrt{\pi}}{p} \exp \left(\frac{q^{2}}{4 p^{2}}\right) \tag{7.2.3}
\end{equation*}
$$

provided $\mathrm{p} \neq 0$ and $\operatorname{Re}\left(\mathrm{p}^{2}\right) \geq 0$.
with $u=x^{\prime}$ or $y^{\prime}, p^{2}=\left(1 / w_{1}{ }^{2}-j k / 2 z\right)$ or $\left(1 / w_{2}{ }^{2}-j k / 2 z\right)$ and $q=j k x / 2 z$ or $j k y / 2 z$

After some algebra we find

$$
\begin{align*}
& E_{2}(x, y)=E_{0} \exp (j k z) \times \\
& \frac{1}{\sqrt{1+j 2 z / k w_{1}^{2}}} \exp \left[\frac{-x^{2}}{w_{1}^{2}\left(1+j 2 z / k w_{1}^{2}\right)}\right] \times \\
& \tag{7.2.4}\\
& \frac{1}{\sqrt{1+j 2 z / k w_{2}^{2}}} \exp \left[\frac{-y^{2}}{w_{2}^{2}\left(1+j 2 z / k w_{2}^{2}\right)}\right]
\end{align*}
$$

which is identical to (7.1.8) which was calculated by the plane wave propagation method.

$$
\text { EX. } 7.3
$$

Propagation of a diffraction-free beam
If in (7.26) we substitute $\mathrm{E}_{2}\left(\mathrm{r}^{\prime}\right)=\mathrm{J}_{\mathrm{o}}\left(\mathrm{Kr}^{\prime}\right)$ where K is a real constant, we find

$$
\begin{align*}
& E_{2}(r)=\frac{2 \pi}{j \lambda z} \exp \left(j k z+\frac{j k r^{2}}{2 z}\right) \times \\
& \int_{0}^{\infty} J o\left(K r^{\prime}\right) r^{\prime} J o\left(\frac{k r r^{\prime}}{z}\right) \exp \left(\frac{j k r^{\prime 2}}{2 z}\right) d r^{\prime} \tag{7.3.1}
\end{align*}
$$

We now use the relation Ref.1

$$
\begin{align*}
& \int_{0}^{\infty} J p(a x) J p(b x) \exp \left(-q^{2} x^{2}\right) x d x= \\
& \frac{1}{2 q^{2}} \exp \left(-\frac{a^{2}+b^{2}}{4 q^{2}}\right) I_{p}\left(\frac{a b}{2 q^{2}}\right) \tag{7.3.2}
\end{align*}
$$

where

$$
\begin{equation*}
I_{p}(z)=j^{-p} J_{p}(j z) \text {, if } p \text { is an integer. } \tag{7.3.3}
\end{equation*}
$$

In our case $x=r^{\prime}, p=0, a=K, b=k r / z$, and $q^{2}=-j k / 2 z$
By substituting these values into (7.3.2) we find for the integral the value

$$
\left.\frac{j z \lambda}{2 \pi} \exp \left[-j \frac{z}{2 k}\left(K^{2}+\frac{k^{2} r^{2}}{z^{2}}\right)\right]\right]_{0}(K r)
$$

and hence for E_{2} :

$$
\begin{equation*}
E_{2}(r)=\exp \left[j\left(k-\frac{K^{2}}{2 k}\right) z\right] J_{0}(K r) \tag{7.3.4}
\end{equation*}
$$

Hence $\left|E_{2}(r)\right|=\left|E_{1}(r)\right|=\| o(K r) \mid$, and the beam is diffraction-free.

REFERENCES

7.1 I. S. Gradshteyn and Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1965.
7.2 C Huygens, Treatise on Light , Dover Publications, New York, 1962.
7.3 J. W. Goodman, Introduction to Fourier Optics 2 nd ed. , McGraw-Hill, New York, 1996.

