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Abstract—A fully automated approach to segmentation of the
left and right cardiac ventricles from magnetic resonance (MR)
images is reported. A novel multistage hybrid appearance model
methodology is presented in which a hybrid active shape model/ac-
tive appearance model (AAM) stage helps avoid local minima of the
matching function. This yields an overall more favorable matching
result. An automated initialization method is introduced making
the approach fully automated.

Our method was trained in a set of 102 MR images and tested
in a separate set of 60 images. In all testing cases, the matching
resulted in a visually plausible and accurate mapping of the
model to the image data. Average signed border positioning
errors did not exceed 0.3 mm in any of the three determined
contours—left-ventricular (LV) epicardium, LV and right-ven-
tricular (RV) endocardium. The area measurements derived from
the three contours correlated well with the independent standard
( = 0.96, 0.96, 0.90), with slopes and intercepts of the regression
lines close to one and zero, respectively. Testing the reproducibility
of the method demonstrated an unbiased performance with small
range of error as assessed via Bland–Altman statistic. In direct
border positioning error comparison, the multistage method
significantly outperformed the conventional AAM ( 0 001).
The developed method promises to facilitate fully automated
quantitative analysis of LV and RV morphology and function in
clinical setting.

Index Terms—Active appearance model, active shape model,
cardiac segmentation, magnetic resonance image analysis.

I. INTRODUCTION

CARDIOVASCULAR magnetic resonance imaging (MRI)
is a highly flexible medical imaging modality suitable to

assess cardiac function in a noninvasive manner. Particularly,
multislice multiphase short-axis image views have shown to be
highly useful to examine global and regional cardiac function.
The heart is imaged at various stages of the cardiac cycle as
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a stack of slices perpendicular to the left-ventricular (LV) long
axis. To quantitatively analyze global and regional cardiac func-
tion from such images, segmentation of the LV endocardial and
epicardial borders is required, as well as segmentation of the
right ventricle to assess right-ventricular (RV) functional de-
fects. Due to the massive amount of data involved in a dynamic
short-axis cardiac magnetic resonance (MR) examination (typi-
cally 200–300 images), robust automated segmentation of these
structures is imperative for routine quantitative analysis of car-
diac MRI.

Automated segmentation of cardiovascular MR images has
shown to be a challenging task. Approaches dedicated to LV seg-
mentation in MR and computed tomography (CT) volume data
have been proposed, based on, among others, active contours and
balloons [1]–[3], adaptive thresholding [4], dynamic program-
ming [5], implicit wavefront propagation [6] or pixel/region
classification [7], [8]. Though partially successful, three major
problems are associated with many of the previously described
contour detection strategies for cardiovascular structures:

• Because of the presence of noise and image acquisition
artifacts in many routinely acquired cardiac MR images
(especially in echo-planar imaging pulse sequences),
image information can be ill defined, unreliable, or
missing. In these cases a human observer is still capable
of tracing a contour in the image data based on experience
and prior knowledge, while many automated techniques
fail. To overcome this problem, high-level knowledge
about the image appearance, spatial organ embedding,
characteristic organ shape, and its anatomical and patho-
logical shape variations should form an integral part of a
segmentation approach.

• A contour as drawn by an expert human observer may
not always correspond to the location of the strongest
local image evidence. In particular, in cardiovascular MR
images, the papillary muscles and trabeculations pose a
problem. Many experts draw the LV endocardial border
as a convex hull around the blood pool, at a location
somewhat outside of the strongest edge [9], [10]. A
second example is the epicardial boundary, which can
be embedded in fatty tissue, as a result of which the
edge is strongest on the fat-air transitions. However, the
contour should be drawn on the inside of this fatty layer,
an intensity transition which is marked by only a faint
edge. Therefore, a decision about the exact location of the
contour cannot always be made based on the strongest

0278–0062/01$10.00 ©2001 IEEE



416 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 5, MAY 2001

image evidence, but should be learned from the examples
provided by expert observers.

• Many segmentation techniques require user interaction to
provide the initial conditions for a segmentation algorithm
in the form of a seed point or initial boundary model. This
may still be labor intensive, and is a potential source of in-
terobserver and intraobserver variations in functional mea-
surements.

Recently, Cootes and Taylor [11], [12] introduced a novel
knowledge driven segmentation technique known as active ap-
pearance models (AAMs), which may solve these three prob-
lems mentioned above. The AAMs form an extension of the
widely applied ASMs (ASMs) [13], [14]—statistical models of
the distribution of a set of landmark points over a population of
training samples. ASMs accommodate shape knowledge about
object shape and its variations, augmented with local appear-
ance knowledge in the vicinity of each landmark using separate
appearance models for each landmark. In contrast, the AAMs
represent the average object shape and its shape variations in
combination with the appearance of a complete image patch in
an integral statistical model. AAMs can be applied to segmenta-
tion by minimizing the error between a target image and a syn-
thesized image patch generated from the model.

A major advantage of the AAMs over other segmentation
methods is that the object shape and the underlying image ap-
pearance are derived via automated training from a set of seg-
mentation examples. The AAMs are trained using shape ex-
amples manually drawn over the original image data. Conse-
quently, they are able to capture the association between ob-
server preferences and the underlying image evidence, making
the AAMs highly suitable to model expert observer analysis be-
havior. Another advantage of the AAMs is the fact that multiple
objects (in our case, the left and right cardiac ventricles) are
modeled in their spatial embedding. The goal of this work was
to develop a fully automated segmentation procedure for cardiac
MR images by exploiting the clinical potential of AAMs.

The main contributions of this work as compared to Cootes’
seminal work on AAMs are threefold. 1) A hybrid combination
of ASMs and AAMs was developed. The model fitting proce-
dure is driven by both ASM deformations and AAM deforma-
tions, whereas the error measure is based on AAMs. This de-
creases the risk of convergence toward a local minimum during
the model matching. 2) A mechanism was developed to reli-
ably initialize the segmentation process using the measure of
model-image matching quality. 3) A method was developed al-
lowing fully automated analysis of LV and RV morphology from
MR image data.

II. PRELIMINARIES

As stated earlier, AAMs are an extension of the well doc-
umented Point Distribution Models (PDMs) and ASMs intro-
duced by Cootes and Taylor [13]. A brief overview of the PDM
background is provided here. More detail is given elsewhere [5].

A. Modeling Shape Using ASMs

ASMs describe the shape and shape variation of a population
by representing each shape sample as a set ofcorresponding

landmarks. By aligning the shape samples and applying a prin-
cipal component analysis (PCA) on the sample distribution, any
sample within the distribution can be approximated by an av-
erage shape with a linear combination of eigenvectorssu-
perimposed

(1)

In two-dimensional images, the eigenvectors form the
principal basis functions, while their corresponding eigenvalues
provide a measure for the compactness of the distribution along
each axis. By selecting the largesteigenvalues, the number of
eigenvectors can be reduced, where a proportionof the total
variance is described such that

Total where Total (2)

Concatenation of the firsteigenvectors results in a compact
shape model, which describes the average object shape in com-
bination with its commonly occurring variation in a population.

B. Modeling Image Appearance

In the original ASMs, limited knowledge about image ap-
pearance is accommodated. For each landmark point, typically
a scanline perpendicular to the shape is sampled, and for each
landmark point, an intensity model is generated analogous to the
generation of the shape models. These local appearance models
serve to generate a proposed boundary location during image
search of the ASM. Therefore only local appearance knowledge
is modeled.

AAMs, however, describe the image appearance and the
shape in an integral shape-appearance model of an image patch
[15]. In the equations below, the subscriptcorresponds to
shape parameters while the subscriptrepresents appearance or
gray-level parameters. An AAM is constructed in the following
steps.

1) Compute an ASM and approximate each shape sample as
a linear combination of eigenvectors, where

represents the sample shape parameters (1).
2) Warp each image on the mean shape using a linear or

nonlinear image interpolation.
3) Normalize each image to the average intensity and unit

variance .
4) Perform a PCA on the normalized intensity images.
5) Express each intensity sample as a linear combination

of eigenvectors, where represents the
sample gray-level parameters.

6) Concatenate the shape coefficient vectors and
gray-level intensity coefficient vectors in the fol-
lowing manner:

(3)

where weighting matrix is a diagonal matrix that re-
lates the different units of shape and gray-level intensity
coefficients.
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(a) (b) (c)

Fig. 1. Comparison of conventional AAM and multistage hybrid ASM/AAM segmentation. (a) Original image. (b) Conventional AAM segmentation
demonstrating a good gray level appearance fit but poor border positioning accuracy (arrows). (c) Multistage hybrid ASM/AAM approach result shows substantial
improvement in border detection positioning (arrows).

7) Apply a PCA to the sample set of allvectors, yielding
the model

(4)

where is a matrix consisting of eigenvectors (from (3))
and are the resulting appearance model coefficients.

C. Matching AAM to Images

Matching an appearance model to a target image involves
finding an affine transformation, global intensity parameters,
and appearance coefficients that minimize the root-mean-square
(rms) difference between the appearance model instance and the
target image. The method described by Cootes [15] suggests
using a gradient descent method that relates model coefficients
with the difference between a synthesized model image and the
target image.

Let represent the affine transformation parameters, and
the global intensity parameters. As shown above, shapeis de-
rived in the target image from the appearance coefficientsand
the affine transformation. Then, the gray-level intensity vector

in the target image spanned by the shapeis extracted using
image warping; represents the image patch warped from the
target image to the average shape. The model gray-level inten-
sity vector is derived from the appearance coefficientsand
is later modified by the global intensity parameters.

Employing reduced-rank multivariate linear regression on a
set of known model parameters, the matrices, , and
are derived. Using a set of training images, their corresponding
modeling parameters, , and are randomly displaced, thus
creating a difference in and . From the displacements
and difference images, regression matrices are computed. Al-
ternately, this is equivalent to finding the gradient of the image
difference objective function.

The corresponding model correction steps can be computed
as

(5)

(6)

(7)

Then, conventional AAM matching can be accomplished as fol-
lows.

1) Place an appearance model roughly on the object of in-
terest using the parameters, , and and compute the
difference image .

2) Compute the rms of the difference image,.
3) Compute the model corrections, , and as derived

above from the difference image (5)–(7).
4) Set 1.
5) Compute new model parameters as ,

, and .
6) Based on these new parameters, recompute and

find the rms.
7) If the rms is less than , accept these parameters and go

to Step 3.
8) Else set to 1.5, 0.5, 0.25, etc. and go to Step 5. Repeat

steps 5–8 until the error cannot be reduced any further.

III. M ULTISTAGE HYBRID ACTIVE SHAPE AND ACTIVE

APPEARANCEMODEL SEGMENTATION

A. Arguments for a Hybrid Model

Although the conventionalAAMapproach performswell with
locating objects, it is better suited for matching their appearance
than it is for the segmentation of target images. The algorithm
tends to produce plausible solutions, but the borders may be im-
precise. This is because an AAM is optimized on global appear-
ance and, thus, less sensitive to local structures and boundary
information commonly used in other segmentation algorithms
[Fig. 1(a) and (b)]. Conversely, ASMs tend to find local struc-
tures fairly well [15]. ASMs typically fit a shape-only model to
a target image based upon the edges or edge patterns normal to
the shape borders. ASM’s strength lies upon a direct association
between edge profiles and shape borders, however they are very
sensitive to their initial placement and do not take advantage of
overall gray level appearance information. Therefore, we con-
cluded that ASM and AAM matching could be combined in a
hybrid fashion during the final stages of optimization to improve
the achieved segmentation with respect to the accuracy of object
boundary placement.
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In our hybrid ASM/AAM stage, the ASM and AAM
matching is performed independently and the resulting pa-
rameters are combined after each iteration. This is done by
extracting the shape model from the AAM, performing a
best fit using only the shape model and the pose parameters
and then transforming the refined shape model back into the
AAM. At the same time, AAM refinement is applied to the
image yielding its own set of coefficients for shape and pose.
The two sets of shape and pose coefficients are combined using
a weighted average.

B. Matching the Shape Model to the Target Using A Modified
ASM

Matching only the shape model to the target image requires
an ASM optimization. Nevertheless, the ASMs may be prone to
noise because the strongest matches between individual points
are not constrained by the locality of adjacent points. Since we
assume that the hybrid refinement is used toward the later stages
of optimization, the AAM has already converged to a close prox-
imity to the target borders. Therefore, spurious edges may cause
more harm than good during the ASM refinement process. This
effect is partially resolved by projecting the new shape back into
the shape model and constraining the coefficients. Further im-
provement of the ASM refinement strategy may come from em-
ploying a global boundary optimization step. We elected to use
dynamic programming to globally optimize the resulting border.
Our ASM refinement process, thus, involves the following.

1) Extracting the shape from the shape model .
2) Creating a cost matrix of normal profiles at each shape

point by determining the Mahalanobis distance func-
tion between model and target border profiles normal to
the border at each landmark point. That is, a normalized
mean profile is created for each shape point and
compared to a set of new profilessampled along the
normal of each shape point to create a cost matrix for dy-
namic programming. A simple Euclidean distance could
be used, but Cootes suggests a Mahalanobis distance de-
fined as

(8)

where is a covariance matrix of the profilessampled
in the training set. Also suggested is that derivatives of
the profiles normalized to a unit vector should be used
instead of profile samples to reduce the effects of global
intensities.

3) Finding the optimal lowest-cost path across the cost ma-
trix using dynamic programming producing a new shape

.
4) Transform into a new shape model instance defined by

and affine transformation. This is done by aligning
to the mean shape yielding the new affine transforma-
tion , and then computing using

(9)

5) Applying model constraints to the new shape modelso
that the new shape is from the allowed shape-space. There

are several ways to constraint. The simplest is to apply
a hard constraint to each coefficient of . Another
method is to scale the length of until each coefficient
is below .

6) Repeat starting with Step 1 until there are no significant
changes in .

C. Hybrid Model Matching

By combining the hybrid technique with conventional AAM
matching, the segmentation is performed in the following way
(in the hybrid stage, ASM parameters are denoted by single-
primed terms, AAM parameters by double-primed terms)

1) The appearance model’s current state with respect to the
object of interest is described via the parameters, , and

. Compute the difference image .
2) From the appearance parameter(4), extract the shape

parameters , and refine and pose utilizing ASM
matching as described above. This results in a new set
of parameters and .

3) Compute the rms difference between the model and the
target image, .

4) Compute the model corrections, , and as derived
above from the difference image (5)–(7).

5) Set 1.
6) Compute new model parameters as ,

, and .
7) Based on these new parameters, recompute and

determine the new matching rms difference value.
8) If the new rms value is less than, accept these param-

eters and go to Step 10.
9) Else set to 1.5, 0.5, 0.25, etc.; go to Step 6.

10) From the new appearance coefficient, extract the
shape model parameterand the appearance parameter

. With the ASM-refined shape coefficient, recom-
bine , , and into using a weighted average on
the shape coefficients ( 0.5 seems to produce the
best results)

(10)

In addition, recombine the new ASM and AAM pose
parameters, and , using a weighted average

(11)

11) Repeat starting with Step 2 until there are no significant
changes in the rms error.

D. Multistage Hybrid ASM/AAM in Fully Automated Cardiac
MR Analysis

The complete active appearance segmentation method is a
multistage process. First, an AAM is matched to the image until
convergence, which results in defining the pose and general
shape of the sought object. Note that the conventional AAM
matching process ends at this point. However the model may
be trapped in a local minimum where the edge boundaries are
slightly off from the target borders, or the shape’s position might
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be significantly off due to an attraction to the wrong bound-
aries. In the second stage, our hybrid ASM/AAM process is re-
peated until convergence to help move the current solution out
of the potential local minimum to which the first-stage AAM
converged. After that, the third stage is invoked. The current
gray-level appearance of the AAM is replaced with the mean
appearance with the shape and pose kept unchanged by setting

0. The third-stage AAM is matched to the image using the
conventional AAM matching process until convergence.

In the reported cardiac MR application, the approximate loca-
tion of the left ventricle is determined fully automatically using
a Hough transform approach that has been thoroughly validated
and demonstrated to be highly reliable (part of MASS cardiac
analysis package, [16]). For each slice in the study, the LV mid-
point is detected, and a straight line is fitted to the estimated
midpoints for all the slices. A point is, thus, determined in the
approximate center of each slice of the LV cavity. The heart
orientation however remains unknown. The orientation of the
AAM is initially set to be horizontal, which was the most preva-
lent cardiac pose in the training set.

Throughout the three-stage matching process, the rms differ-
ence between the model and the target image is used to evaluate
the quality of the final match. Five repeated matches are per-
formed with initial orientation ranging from 90 to 90 in
45 intervals. If no initial positioning yields a good-enough rms
error, the best of the five solutions is selected. Fig. 1(c) shows
the final segmentation using the hybrid ASM/AAM approach in
comparison with the conventional AAM approach [Fig. 1(b)].

Our fully automated multistage hybrid ASM/AAM segmen-
tation can be summarized as follows.

1) Initialization: The approximate location of the LV mid-
point is determined via Hough transform.

2) Early AAM Stage: The mean AAM is placed on the target
image with its LV midpoint centered on the automati-
cally determined midpoint and its orientation set at90
with respect to the horizontal orientation. The AAM is
matched to the target image using the conventional AAM
matching until convergence.

3) Hybrid ASM/AAM Stage: The hybrid ASM/AAM refine-
ment is employed until convergence.

4) Final AAM Stage: The mean-appearance AAM (
0) is matched to the target image using the conventional
AAM matching until convergence.

5) Best Match Selection: Reinitialize the AAM matching
with the model rotated 45 from the last initial posi-
tion. Repeat steps 2–4 five times. Use the match with the
lowest rms error as final.

Following this process, the model is fitted to the image data with
a high likelihood to avoid local minima. Fig. 2 demonstrates a
typical rms matching error as a function of the model matching
iteration step. Note that each of the three sequential matching
processes independently converges yielding an overall favorable
rms matching error.

IV. EXPERIMENTAL METHODS

The performance of our AAM segmentation methodology
was tested in in vivo MR image data by comparison with a

Fig. 2. Typical rms matching error as a function of the model matching stage
and iteration step (rendering). The labels below the iteration step axis denote
which model matching stage is employed.

manually defined independent standard of contours drawn by
a human expert.

A. Data

The model was trained and its performance tested in rou-
tinely acquired multislice multiphase short axis cardiac MR sets
that were obtained from 34 healthy volunteers and 20 patients
(Fig. 3). To obtain a balanced population, patients were selected
that suffered from various common cardiac pathologies such
as hypertrophic obstructive cardiomyopathy, myocardial infarc-
tion, or LV aneurysm. In each image set, three end-diastolic,
mid-ventricular slices were selected for the total of 162 images
of 256 256 pixels; field of view: 400–450 mm; pixel sizes:
1.56–1.75 mm.

B. Training and Testing Data Sets

The available data were divided in a training set consisting
of 102 images (from 11 patients and 23 normal subjects) and
a testing set consisting of 60 images (from nine patients and
11 healthy subjects). The training and testing sets were com-
pletely disjoint—at the image as well as subject levels. The
models were trained on the training set as described above. The
method’s performance was assessed in the testing set.

C. Independent Standard and Quantitative Assessment Indices

The three contours depicting the LV endocardium, RV endo-
cardium, and LV epicardium were manually drawn by an expert
observer in all images used in the reported study (training as
well as testing) and served as an independent standard. Man-
ually traced contours were defined using user-friendly tracing
and editing tools of the cardiac analysis package MASS [16].
The observer was unaware of the results of the computer anal-
ysis and had unlimited time to define the independent standard
to full satisfaction.

To quantitatively assess the accuracy of the automatically
defined contours with respect to the independent standard,
border positioning error measures comparing the automatically
determined contours with the independent standard were
determined. The average signed, unsigned, maximum, and
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(a) (b)

Fig. 3. Example MR images used for validation. See Fig. 6 for the segmentation results.

rms border positioning errors were independently defined for
all three borders by measuring the distances between corre-
sponding border points. Corresponding points were defined as
pairs of points, the first point being from the computer-detected
border and the second one from the observer-determined border
that were closest to each other using the Euclidean metric.
Border positioning errors are expressed in millimeters as mean

standard deviation. The negative sign of the signed error
value means that the automatically determined border was
inside of the observer-defined border.

Three clinically important area-dependent measures were
calculated and used for performance assessment: LV cavity
area, RV cavity area, and LV epicardial area. The individual
indices were defined as the areas enclosed by the LV and RV
endocardial and epicardial borders, respectively. Area measure-
ments are expressed in centimeters squared. The information
from the MR-image DICOM header was used for pixel size
calibration.

D. Reproducibility

To assess reproducibility, the method was applied to the
testing data set twice. In the first run, the initial positions
of the AAM differed by 45 . The initial AAM orientations
were rotated by 22.5 for the second run. Thus, the two
reproducibility runs were independent.

E. Statistical Assessment

To statistically assess the performance of the computer
method, linear regression analysis was used to compare
computer-detected and observer-defined area measurements.
Regression equations were also compared to the line of identity
using -statistic for slope and intercept. Avalue less than 0.05
was considered significant. Bland–Altman statistical analysis
was used to assess the method’s reproducibility by comparing
the agreement between the area measurements in the two
independently performed automated analysis studies. Since
area errors increase proportionally with the increasing heart
size, log–log Bland–Altman plots were used for reproducibility
assessment [17]. To demonstrate that the introduced multistage
hybrid approach yields significantly better results in compar-
ison to the conventional AAM method, unsigned positioning

TABLE I
BORDER POSITIONING ERRORSASSESSING THEACCURACY OF

THE AUTOMATICALLY DEFINED BORDERS WITHRESPECT TO THE

INDEPENDENTSTANDARD

Errors expressed as mean� standard deviation.

errors obtained in the testing set were compared using a paired
-test.

V. RESULTS

The contours of the LV and RV endocardium, and LV epi-
cardium were automatically detected in all images in the testing
set by performing our multistage ASM/AAM segmentation as
presented above. In all 60 cases, the matching resulted in a visu-
ally plausible mapping of the model to the image data. All bor-
ders were detected fully automatically and were not manually
edited. The computer determined borders were accurate with
the maximum and rms border positioning errors summarized in
Table I. The results show minimal bias in border positioning and
typical border placement within one to two pixels of the manu-
ally traced independent standard.

A good correlation was obtained between computer-detected
and observer-defined LV and RV cavity areas as well as for the
LV epicardial areas: ( 0.96, cm ;
0.90, cm ; 0.96, cm ,
respectively; Fig. 4). The slopes and intercepts of the LV and RV
cavity area regression lines did not differ significantly from one
and zero, respectively .

Assessing reproducibility, the Bland–Altman analysis of
agreement revealed very small bias and good coherence be-
tween the two independently computer-determined epicardial,
LV, and RV cavity areas (0.4%, 0.6%, and 0.2%, respectively).
As shown in Fig. 5, 95% of the computer measurements of
LV cavity areas can be expected to differ from repetitive
measurements by less than 8% below and 8% above the mean
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Fig. 4. Comparison of the observer-defined and computer-determined area measures in the 60 images of the testing set.

Fig. 5. Bland-Altman plots showing reproducibility of two independent
computer-determined area measures in the 60 images of the testing set. (a) LV
cavity areas. (b) RV cavity areas. (c) Epicardial areas.

of the two runs. For the computer measurements of the RV
cavity area, 95% of cases can be expected to differ from repet-
itive measurements by less than 17% below and 19% above
the mean. For the computer measurements of the epicardial

area, 95% of cases can be expected to differ from repetitive
measurements by less than 8% below and 8% above the mean.

Our multistage hybrid AAM method significantly outper-
formed the conventional AAM approach at the significance
level of as assessed by comparison of unsigned
border positioning errors in the testing set.

Two examples of computer-detected segmentation achieved
in MR images from the testing set are given in Fig. 6. The orig-
inal image data and the manually defined borders are shown to-
gether with the results of the automated computer analysis.

VI. DISCUSSION

The reported method solves several important problems of
cardiac MR image segmentation. The method identifies struc-
ture boundaries using knowledge acquired during the training
stage from expert-segmented examples. The approach consis-
tently delivers high quality segmentations across a variety of dis-
ease conditions in not-always-perfect clinical-quality images.
Fully automated performance facilitates utility in clinical care.
Additionally, it is the first such method performing RV analysis.
The discussion will concentrate on three topics—behavior of
the reported multistage hybrid ASM/AAM method, its achieved
performance, and applicability to clinical data.

A. Behavior of the Hybrid ASM/AAM Segmentation Method

The method is designed as a multistage process and the hy-
brid ASM/AAM model is used in the second stage. The overall
strategy is to concatenate several independent matching phases
in which the later stages help the model to emerge from a poten-
tial local minimum the earlier stages converge to. The matching
sequence is AAM hybrid ASM/AAM AAM. There are
several reasons for starting with a conventional AAM matching
stage and not using the hybrid model exclusively. First, the ASM
component in the hybrid model is not a suitable approach in the
early model fitting stages. Initially, the search for the overall
pose and location of the model is of primary importance and the
ASM is not well suited for this task. Second, the higher compu-
tational demands of the hybrid ASM/AAM stage would cause a
somewhat slower runtime. Our experiments have shown that the
designed multistage approach results in excellent overall per-
formance as far as speed, accuracy and stability are concerned.
After the first stage of AAM matching finishes, chances are
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(a) (b) (c)

(d) (e) (f)

Fig. 6. LV and RV contours obtained by our multistage hybrid ASM/AAM segmentation method in cardiac MR images. Presented examples are from the testing
set. (a) and (d) Show the originals, (b) and (e) the independent standard. (c) and (f) Show the results of our multistage segmentation method. See Fig. 3for the
full-size original images that were analyzed using our fully automated approach.

that the location represents a local minimum of the evaluation
function. The competition introduced by the hybrid ASM/AAM
together with the ASM’s focus on local border properties ef-
fectively forces the AAM to move from such undesirable lo-
cation. The third stage of the overall process starts with dis-
regarding the gray-level appearance information in the current
AAM which again aids in escaping a possible local minimum
found during the ASM/AAM stage (Fig. 2). The final AAM op-
timization stage is then employed to correct any appearance er-
rors introduced by the ASM. It is possible to continue this cycle
of hybrid ASM/AAM and AAM repeatedly until convergence,
but the small gains in improvement didn’t justify the signifi-
cantly slower runtime.

B. Performance

Performance of the multistage hybrid AAM method was
found excellent by the variety of validation experiments per-
formed. The method is highly reproducible and gives accurate
border locations as well as area measurements.

The significant increase of border positioning accuracy in
comparison with the conventional AAM method is mostly at-
tributed to the cases in which the AAM does not converge to the

final position due to a premature convergence to a local min-
imum. Consequently, the hybrid stage is most valuable in the
images that may otherwise be considered failures. Indeed, the
combination of multistage hybrid methodology and the auto-
mated initialization decreased the number of failures from five
to zero in the testing set of MR images. We also compared the
performance independently in the patient and normal-control
subsets of the testing set. Not surprisingly, the results obtained
in the normal data sets are consistently better, suggesting that
a larger number of diseased hearts should be used for training.
Still, the regression coefficients of all area-regression analyzes
independently comparing LV, RV, and epicardial areas in normal
or patient group with the independent standard were very good

. The patient-group RV area was the only exception
with a slightly lower correlation 0.84, clearly, reflecting
higher difficulty of diseased RV segmentation as well as the lim-
itations of the available independent standard.

The consistency of the independent standard is one of the
key factors on the way to good performance. Misleading infor-
mation, if present in the training set, will decrease the knowl-
edge contained in the model. Similarly, local inaccuracies in the
observer-defined borders may worsen the segmentation results.
Our independent standards were carefully prepared by expert
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cardiologists well aware of the requirements of computerized
training. The RV borders are more difficult to identify consis-
tently. Not surprisingly, the most frequent inconsistencies occur
in the T-junction areas of the RV endocardial border and LV
epicardium. Consequently, the local border positioning errors
identified in the testing set frequently originate in these areas.
Another less pronounced source of tracing ambiguities across
the 102 images of the data set can be found in the areas where
borders cut through papillary muscles. No physical border exists
here that can be followed. The ambiguities in border positioning
are reflected in the trained model subsequently used for segmen-
tation. While it seems almost impossible to collect completely
unambiguous and also large training and testing data sets, spe-
cial care will be given in the future to the identified problem
areas to further improve our unique and valuable independent
standard data base and make it available for future studies.

C. Applicability to Clinical Data

Our fully automated method never failed in the analyzed
testing set. The method was found excellently capable of
capturing observer preference expressed in the training set
tracings. Our method generated segmentation results that
were not merely based on the strongest image evidence, but
consistently took the preference of the expert observer into
account—specifically, unwanted regions such as the papillary
muscles or epicardial fat were consistently excluded. Accurate
segmentations were achieved even in images where the image
evidence was inconclusive or missing, for instance because of
poor blood-muscle contrast or electrode artifacts. Due to the
fact that AAM unifies shape and appearance knowledge in
one integral model, the method works exceptionally robustly,
even in low-fidelity, routinely acquired cardiac MR images
from sometimes severely deformed patient hearts. However,
the current model training has been limited to mid-ventricular,
end-diastolic images. Further development is required to
achieve similar results in apical and basal slices, as well as
nondiastolic phases of the cardiac cycle. Together with the
full automation and fast processing speed (5–10 s/image), and
after additional work focusing on inherently three–dimen-
sional and four-dimensional model training and model-based
segmentation, the multistage hybrid ASM/AAM cardiac MR
segmentation may be an ideal segmentation method for routine
quantitative clinical analyzes of LV and RV morphology and
function.

VII. CONCLUSION

A new highly reliable automated approach to segmentation
of the left and right heart ventricles from magnetic resonance
images was reported. The method incorporates a novel hybrid
ASM/AAM strategy in a multistage fashion, which helps to
avoid convergence to local minima. A new model matching ini-
tialization approach was developed making the method fully au-
tomated.

Comparing the results obtained in a testing set of 60 car-
diac MR images with an observer-defined independent standard
demonstrated good border positioning accuracy, as well as a
good and unbiased agreement of area measurements. Methods’

reproducibility was tested using Bland–Altman statistic with fa-
vorable results. Our new method was shown to significantly
outperform the conventional AAM matching approach in the
testing set.

The developed method is the first approach delivering auto-
mated segmentation of LVand RV borders. It promises to fa-
cilitate fully automated quantitative analysis of LV and RVmor-
phology and function in routinely acquired clinical MR images.
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