V&V Procedures for CFD Labs

58:160 Intermediate Mechanics of Fluids (2013)

By: Maysam Mousaviraad, Timur Dogan

The purpose of this document is to summarize and demonstrate V & V procedures to be used in CFDLab reports.

Nomenclature:

 S_{g1} : solution from fine grid

 $S_{\rm g2}$: solution from medium grid

S_{g3}: solution from coarse grid

R_g: grid convergence ratio

r_g: grid refinement ratio

Pg: order of accuracy for grid

 P_{gest} : theoretical order of accuracy, 2 for 2^{nd} order and 1 for 1^{st} order schemes

P: ratio of accuracy of grid and theoretical accuracy

 δ^*_{REg1} : grid error from Richardson Extrapolation based on fine mesh solution

Ug: grid uncertainty based on FS method

Formulae:

$$\epsilon_{g21} = S_{g2} \text{-} S_{g1}$$

$$\epsilon_{g32} = S_{g3} \text{--} S_{g2}$$

$$R_g = \frac{\mathcal{E}_{g21}}{\mathcal{E}_{g32}}$$

If monotonically converged (0<R $_g<$ 1), then:

$$P_{g} = \frac{\ln\left(\frac{\mathcal{E}_{g32}}{\mathcal{E}_{g21}}\right)}{\ln(r_{g})}$$

$$P = \frac{P_g}{P_{gest}}$$

$$\delta^*_{REg1} = \frac{\mathcal{E}_{g21}}{(r_g^{P_g} - 1)}$$

$$U_{g} = \begin{cases} (2.45 - 0.85P) |\delta^{*}_{REg1}| & \text{if} \quad 0 < P \le 1 \\ (16.4P - 14.8) |\delta^{*}_{REg1}| & \text{if} \quad P > 1 \end{cases}$$

Following examples demonstrate grid studies for friction factor of laminar pipe flows.

Example:

$$\begin{split} r_g &= \sqrt{2} \\ \varepsilon_{g21} &= S_{g2} - S_{g1} = -0.0027916 \\ \varepsilon_{g32} &= S_{g3} - S_{g2} = -0.0157815 \\ P_g &= \frac{\ln(\frac{\varepsilon_{g32}}{\varepsilon_{g21}})}{\ln(r_g)} = 2.49907 \\ P &= \frac{P_g}{P_{gest}} = \frac{2.49907}{2} = 1.249535 \\ \delta^*_{REg1} &= \frac{\varepsilon_{g21}}{(r_g^{P_g} - 1)} = -0.0006 \\ P &> 1 \\ U_g &= (16.4P - 14.8) * \left| \delta^*_{REg1} \right| = 0.003415424 \end{split}$$