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ABSTRACT 

 

This paper presents a study on the feasibility of applying high performance computing 

(HPC) to the Bridging Domain Multiscale (BDM) method, so that featured scalable 

multiscale computations can be achieved. Wave propagation in a molecule chain through 

an entire computational domain is employed as an example to demonstrate its 

applicability and computing performance when multiscale-based simulations are 

conducted in a large-scale parallel computing environment. In addition, the conceptual 

idea and computing framework using Grid computing technologies is proposed to 

enhance future multiscale computations in nanotechnology. 

 

Keywords: multiscale, bridging domain, high performance computing, Grid computing, 

nanotechnology  

 



1. Introduction 

Nanotechnology is used to create innovative materials with new functional or 

multifunctional structures and novel devices on a nanometer (10-9m) scale.  

Nanotechnology has emerged in multidisciplinary research fields. For instance, numerical 

methods in computational science play a crucial role in the research fields of nano- 

mechanics and materials science, especially in simulating and understanding the principal 

design or fabrication of novel nanoscale materials such as nanocomposites.  Among these 

methods, molecular dynamics (MD) is one of the effective and efficient numerical 

methods that have been widely used in elucidating complex physical phenomena1-5 on a 

nanoscale. Although MD has many advantages, it exhibits limitations with respect to both 

length and time scales.  For example, a material with a cubic volume of 1 m3 contains 

trillions of atoms, and a typical time-step in MD simulation is roughly one femtosecond 

(~10-15s). Consequently, these characteristics limit the use of MD for simulation of many 

physical phenomena, such as material failure problems. At present, a complete MD 

modeling is unrealistic, especially for completely simulating a material system with 

heterogeneity, even with powerful high-end computers. Therefore, there exists an urgent 

need to develop a new and applicable methodology that can be used to efficiently 

simulate large nanosystems. 

 

Recently, the development of efficient multiscale methods that are capable of addressing 

large length and time scales has been addressed in computational nanotechnology for the 

design of novel nanoscale materials and devices6. Multiscale methods can be divided into 

two classes: hierarchical7-10 and concurrent multiscale methods11-16. In hierarchical 



methods, the continuum approximation is based on the properties of a subscale model, 

such as an MD model. The intrinsic properties of the material are determined at the 

atomic level and embedded in a continuum model using a homogenization procedure. 

Classical hierarchical multiscale methods include quasicontinuum methods7 and 

discontinuous Galerkin (DG) methods within the framework of the Heterogeneous 

Multiscale Method (HMM)8. Most hierarchical methods assume that nanostructures are 

perfect molecular structures subject to zero temperature. Xiao and Yang9,10 proposed 

nanoscale meshfree particle methods with a temperature-related homogenization for 

nanoscale continuum modeling and simulation.  

 

Concurrent multiscale methods employ an appropriate model in different subdomains to 

treat each length scale simultaneously. In a pioneering work, Abraham et al.11,12 

developed a methodology called MAAD (Macro-Atomistic-Ab initio-Dynamics) in 

which a tight-binding quantum mechanical calculation is coupled with MD and, in turn, 

coupled with a finite element continuum model. Choly et al.13 presented formalism for 

coupling a density-functional-theory-based quantum simulation within a classical 

simulation for the treatment of simple metallic systems. Recently, several concurrent 

multiscale techniques that couple continuum and molecular models in particular have 

been developed. Wagner and Liu14 developed a multiscale method in which the 

molecular displacements are decomposed into fine scale (molecular) and coarse scale 

(continuum). Belytschko and Xiao15,16 coupled MD with continuum mechanics via a 

bridging domain.  

 



A concurrent multiscale method can be designed to span a range of physical domains of 

different length scales, from atomic to microscopic/mesoscopic to macroscopic scales. 

Unfortunately, most multiscale methods still require intensive computation for large 

nanoscale simulations, although such limitations are much smaller than those associated 

with full MD simulations. On the other hand, due to the highly intensive computation 

requirement, a single-processor computer is barely sufficient to handle simulations that 

typically involve trillions of atoms and up to several seconds. The limitation of 

computing capacity naturally motivates an alternative approach—to conduct concurrent 

multiscale computations based on high performance computing (HPC) or Grid-based 

distributed computing. To date, a few HPC-based multiscale simulations have been 

reported. For example, Yanovsky17 utilized parallel computing technologies to study 

polymer composite properties. Ma et al.18 implemented their continuum/atomic coupling 

algorithm in the Structural Adaptive Mesh Refinement Application Infrastructure 

(SAMRAI) using parallel processing to study two-dimensional crack propagation. 

However, most existing works do not focus on HPC algorithm development and 

efficiency. 

 

In the U.S., the Cyberinfrastructure recently promoted by the National Science 

Foundation (NSF) provides a gateway to future science and engineering discovery. It 

enables large-scale resource sharing, especially distributed HPC systems with 

unprecedented computational capacity. Such capacity reaches several hundred teraflops, 

and upgrading to petaflops is just a few years away on the NSF TeraGrid—a Grid 

computing environment and key element of U.S. cyberinfrastructure. Grid computing 



technologies enable users to assemble large-scale distributed computational resources to 

create a secured virtual supercomputer that can be used to accomplish a specific 

purpose19.  This assemblage of distributed resources is dynamically orchestrated using a 

set of protocols as well as specialized software referred to as Grid middleware. This 

coordinated sharing of resources takes place within formal or informal consortia of 

individuals and/or institutions often referred to as Virtual Organizations (VO)20. Grid 

computing technologies give scientists the ability to handle large-scale computations, 

especially in nanotechnology investigations. 

 

In this paper, we will develop a scalable, parallel bridge domain coupling algorithm for 

computations in nanotechnology applications. The bridging domain coupling method is 

described in Section 2 after the introduction. This coupling method is extended to a 

scalable parallel multiscale method in Section 3. Associated domain decomposition and 

communication algorithms are explained, and a one-dimensional example is studied for 

investigating computing performance. Section 4 offers a description of the feasibility of 

multiscale modeling and simulation using Grid computing, followed by a conclusion. 

 

2. Bridging domain coupling method 

 

The Bridging Domain Coupling Method (BDCM) was proposed by Xiao and 

Belytschko15,16. Here, we first provide a brief summary of this methodology, detailed in a 

one-dimensional molecule chain that includes a molecular dynamics domain, a finite 



element (continuum) domain, and a bridging domain where the molecular and continuum 

domains overlap, as shown in Figure 1.  

 

(Figure 1) 

 

Generally, a BDCM method serves as a linkage between molecular and continuum 

models through an overlapped domain. The continuum domain, CΩ , modeled by a 

macroscopic continuum model, overlaps the molecular domain, MΩ , modeled by a 

molecular model, through an interaction region, called a bridging domain, intΩ . The 

superscripts “M” and “C” refer to the molecular and continuum domains, while the 

superscript “int” refers to the interaction domain or bridging domain where a bridging 

domain method is applied. In the bridging domain method, the total energy is taken to be 

a linear combination of the molecular and continuum energies. Therefore, in the bridging 

domain, the molecular and continuum models co-exist. A linear switch scaling parameter 

α  is introduced hereby in the overlapped bridging domain. For example, the parameter 

α  can be proposed as  
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The Hamiltonian energy for the complete domain can be considered as a linear 

combination of the molecular and continuum counterparts. It can be expressed as 
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where Im  and Id  are the mass and displacement of the atom, 0ρ  is the initial density in 

the finite element domain, Iv  is the velocity of node I , and CW  is the total strain energy 

in the continuum domain. In the molecular domain, ( )xW M  refers to the potential 

function that is the summation of all energies due to any force field (such as the pair-wise 

interaction of the atoms, three-body potentials, or others). Assume the potential is due 

only to a constant external force, ext
If , such as electrostatic forces, and a pair-wise 

interatomic potential is denoted by ),( JIMIJ xxww = , where x is the coordinate. The 

total potential can be expressed as 
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The strain energy of the continuum model is defined by 

∫
Ω

Ω=
0

dwW C
C        (4) 

where Cw  is the potential energy per unit volume within the continuum domain. It 

depends on the elongations and angle changes of the atomic bonds that underlie the 

continuum model. The potential energy density can be calculated based on the 

homogenization techniques7. If temperature effects are considered, the free energy 

density, instead of the potential energy density, is employed in Eq. (4), and calculation 

can be performed based on the temperature-related Cauchy-Born rule9,10. 



 

In the bridging domain, a Lagrange multiplier can be used to conjunct the molecular and 

the continuum domains, with the following constraints: ( ) ( ) 0, =− tdtXu II , where 

∑=
J

JIJI uXNtXu )(),(  is the finite element interpolated displacement of atom I . The 

total Hamiltonian energy of the system can then be expressed as 
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Based on Hamiltonian mechanics, the following discrete equations can be derived: 

  
L

I
int

I
ext

III

LC
I

intC
I

extC
III

fffdm

fffuM

−−=

−−=
&&

&&
   

M

C

in

in

0

0

Ω

Ω
  (6) 

where  

( ) ( )( ) IIIIII mXmMXM αα −== 1  

and IM  is the nodal mass associated with node I . 

 

The external nodal forces, including the scaling factor, are defined as 
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where b  is the body force per unit mass and t  is the traction applied on the boundary 0Γ  

in the continuum domain.  

 

Similarly, the internal forces are 
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The forces LC
If  and L

If  are due to the constraints enforced by the Lagrange multipliers, 

and they are 
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An explicit algorithm to solve the above discrete equations is described below: 

1. Initialize the domains, displacements, velocities, and accelerations 

2. Calculate the trail displacements with constraints neglected: 
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(The subscripts in parentheses are the time step numbers). In the equations above, the 

accelerations are obtained from Eq. (6) without considering the forces due to the 

constraints; therefore, 
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3. Calculate the trial velocities:  
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4. Compute unknown Lagrange multipliers: 
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5. Update the velocities:  
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6. Repeat Step 2 through Step 5 until the end of simulation. 

 

As an example, we simulate wave propagation in a one-dimensional molecule chain, 

which contains 431 atoms. The Lennard-Jones (LJ) 6-12 potential is employed to 

describe the inter-atomic interaction between two neighboring atoms. This potential is 

expressed as 
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where the parameters are J2.0=ε  and nm11.0=σ . The equilibrium bond length is 

given as nmr 139.00 = .  

 



In the bridging domain coupling model of the molecule chain similar to that in Figure 1, 

the molecular domain contains 211 atoms, and there are 40 elements of equal length in 

the continuum domain., Each element contains approximately 5 atoms. The bridging 

domain includes 6 finite elements. In the continuum model, all the bonds in a single 

element are assumed to be deformed uniformly. Consequently, the length of deformed 

bonds in this single element is 0Frr = , where F  is the deformation gradient in this 

element. In computing the nodal internal forces via Eq. (8), the strain energy density in an 

element is the potential energy density: 
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During the simulation, the time step is 0.002 ps. There are initial displacements on the 

atoms in the left portion of the molecular domain. The initial displacements contain a 

combination of high-frequency and low-frequency modes. Once the simulation starts, 

there is a wave propagating from the molecular domain to the continuum domain. Since 

the length of the high-frequency wave is larger than the element length in the continuum 

domain, a nonphysical wave reflection phenomenon may occur in most multiscale 

simulations16. However, the bridging domain coupling technique can automatically 

eliminate such a phenomenon, as shown in Figure 2. 

 

(Figure 2) 

 

 



3. Bridging domain multiscale method with parallel computing 

 

3.1 Bridging domain multiscale method 

 

(Figure 3) 

 

The bridging domain coupling method can be extended for coupling the nanoscale to the 

microscale and macroscale for a given system, as shown in Figure 3. A macroscale 

domain (~10-3 m) can be modeled as a linear elasticity domain using finite element 

methods21. The elastic properties are obtained using a Representative Volume Element 

(RVE) model from an MD simulation at a given temperature. A microscale domain 

(~106m) can be embedded in the macroscale domain, modeled using a nonlinear FE 

method22. The homogenization techniques, such as the TCB rule9,10, can be implemented 

in the nonlinear FE method to construct the temperature-dependent constitutive equations 

of the continuum.  A subdomain in the microscale domain can be treated as a nanoscale 

(molecular) domain (~10-9 m) using MD if one is interested in studying physical 

phenomena in this subdomain. We can employ a Hoover thermostat23 to maintain the 

nanoscale domain at a given temperature. It should be noted that a number of different 

length scales, such as the mesoscale domain, could be added as desired between the 

macroscale and microscale continuum domains. Furthermore, even the macroscale or the 

microscale can contain a number of different length scale subdomains. Different length 

scales are coupled via the bridging domain coupling technique16.  

 



Most concurrent multiscale methods employ multiple length scales but only a single time 

step. In coupling finite element methods and molecular dynamics, if the finite element 

mesh is graded down to the atomic spacing at the interface of the continuum and 

molecular domains11, the time step must be restricted to the order of one femtosecond 

(10-15 s), due to the stability requirement in the molecular model. Consequently, 

significant computation time is wasted for large length scales in which large time steps 

can be used. In the bridging domain multiscale method, coupling different scales without 

such grading down of mesh sizes will be achieved by a straightforward implementation 

of different time steps via a multiple-time-step algorithm.  

 

(Figure 4) 

 

Since uniform meshes can be used in each length scale in the bridging domain multiscale 

method, it is possible to apply different time steps in different length scales, as shown in 

Figure 4.  A multiple-time-step algorithm is proposed for the bridging domain multiscale 

method. For example, to couple a molecular model at the nanoscale and a continuum 

model at the microscale, a fine time step, τΔ , is used in the molecular model and a 

coarse time step, τΔ=Δ Nt , is used in the microscopic continuum model. Eq. (13) is then 

rewritten as: 
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The bridging domain then connects a fine length/time scale and a coarse length/time 

scale. Compatibility of different length scales will be enforced by means of a constraint 

imposed via the Lagrange multiplier method, i.e., Eq. (14), at each coarse time step, tΔ , 

as shown in Figure 4. Consequently, the equations of motion will be solved 

independently in different length scales with different time steps. At each coarse time 

step, velocities of nodes/atoms in the bridging domain will be corrected via the bridging 

domain coupling technique. 

 

3.2 Domain Decomposition  

 

(Figure 5) 

 

To perform such multiscale simulations via high performance computing, efficient and 

effective domain decomposition strategies are necessary. In the bridging domain 

multiscale method, as illustrated in Figure 5, a simulation domain can be easily 

hierarchically divided into subdomains, each of which can be processed in parallel. 

1) The entire domain is divided into several sub-domains based on the scale 

difference. The primarily decomposed sub-domains are called the first-generation (FG) 

subdomains. The computational jobs on the subdomains can be distributed to different 

groups of HPC processors. For example, the computations in the molecular domain can 

be performed at Group 1 (a group of processors within a single HPC cluster), while those 

in the microscale/macroscopic domains can be performed at Group 2 (another group of 



processors within a single HPC cluster). The first-generation subdomain decomposition is 

parallel computing task decomposition. Each FG subdomain is further divided into a 

number of second-generation (SG) subdomains. Each SG subdomain is assigned to a 

single processor. In other words, as the secondary effort, the data within the subdomain 

are decomposed and transferred to each processor within a specified group for intensive 

computation. Obviously, it is a data-decomposition. This way, the task and data 

decomposition are combined.  

2) A bridging subdomain is a special subdomain. It is shared by two SG subdomains, 

each of which belongs to two different length scales. Although one SG subdomain can 

overlap more than one other SG subdomain, the bridging subdomains do not overlap each 

other.  

3) Inter-domain communications between two SG subdomains take place in each FG 

subdomain separately. Such inter-domain communications occur prior to solution of the 

equations of motion so that the motion of atoms or nodes at the SG subdomain 

boundaries is consistent. 

4) The procedure for solving equations of motion in each FG subdomain is 

independent. 

5) Once the equations of motion are solved at each time step (or coarse time step in 

the event that a multiple-time-step algorithm is used), the bridging domain 

communications take place between two processors. It should be noted that those two 

processors belong to two different groups of processors, shown in Figure 4. The bridging 

coupling techniques are applied to correct the trial velocities of nodes or atoms in each 

bridging subdomain independently.   



 

3.3 Inter-domain and bridging domain communications 

Figure 6 illustrates the inter-domain communication in the BDM method.  A simple 

BDM model contains two subdomains, ΩA and ΩB, in the molecular domain and two 

subdomains, ΩC and ΩD, in the continuum domain.  ΩA and ΩB are allocated to two 

different processors in the same group of processors. Similarly, ΩC and ΩD are allocated 

to two processors in another group of processors. Inter-domain communications occur 

between ΩA and ΩB or between ΩC and ΩD prior to solution of the equations of motion.  

Such communications take place only inside each group of processors. In the molecular 

domain, ΩA and ΩB share atom E. Since the multi-body potential functions are generally 

utilized in MD simulations, slave domains int
BΩ  and int

AΩ , associated with ΩA and ΩB, 

respectively, are introduced to support energy and force calculations. For example, the 

motion of atom H is updated in ΩB. Such information is passed to the slave domain int
BΩ  

to assist in the calculation of the interatomic force of atom E in ΩA because the potential 

in the molecular domain includes the angle-bending potential of bonds GE and HE. 

Similarly, the motion of atom G is updated in ΩA. Such information is passed to the slave 

domain int
AΩ  to assist in the calculation of the interatomic force of atom E in ΩB. 

Consequently, after solving the equations of motion, the updated motions of atom E in 

either subdomain ΩA or ΩB are identical to avoid the occurrence of nonphysical 

phenomena. It should be noted that the size of a slave domain depends on the selected 

potential functions, in particular the cutoff distance for Van der Waals potential 

functions.  

 



(Figure 6) 

 

The inter-domain communication in the continuum domain has a different strategy from 

the one in the molecular domain. The continuum subdomains ΩC and ΩD share the 

boundary node F, as shown in Figure 6. FC and FD are used to represent the same node F, 

but in different subdomains.  Unlike inter-domain communication between neighboring 

molecular subdomains, inter-domain communication between neighboring continuum 

subdomains does not require slave domains, instead acting to aid the exchange of 

calculated internal forces of boundary nodes.  For instance, the internal force of node FC, 

calculated in subdomain ΩC, is passed to subdomain ΩD and is set as the negatively 

external force of node FD.  A similar procedure is performed to pass the internal force of 

node FD, calculated in subdomain ΩD, to subdomain ΩC as the negatively external force 

of node FC.  Therefore, the motions of node F, updated by solving the equations of 

motion, Eq. (6), in both subdomains ΩC and ΩD, are identical.  

 

(Figure 7) 

 

Once the equations of motion are solved independently in each processor, the bridging-

domain communication occurs separately in each bridging subdomain, e.g., B
ACΩ  and 

B
BDΩ  in Figure 7. For example, trial velocities of atoms in B

BDΩ  of ΩB are passed to ΩD, 

while trial velocities of nodes in B
BDΩ  of ΩD are passed to ΩB. Then, the Lagrange 

multipliers in B
BDΩ  are solved via Eq. (14). Last of all, the trial velocities of atoms and 



nodes in the bridging domain B
BDΩ  will be corrected in ΩB and ΩD, independently 

through Eqs. (15) and (16).  

 

Upon the above domain decomposition and data communication, the parallel computing 

processing can be implemented in the workflow illustrated in Figure 8. 

 

(Figure 8) 

 

3.4 Complexity and performance evaluations 

An important focus of the proposed method is the definition of a suitable computational 

intensity metric for sub-domains:  

M ( d ) = f  ( D ( d ), O, P )     (20) 

where M is a function of the domain size D, i.e., the number of nodes or atoms having 

sub-domain d, the computing time complexity O of a particular component of a 

multiscale method, and parameters P that characterize the computing capacity of each 

specific HPC resource. M will be used to determine the size of sub-domains in domain 

decomposition.  M is also an important parameter that can be used to guide decisions 

about when and where these sub-domains should be scheduled.   

 

The computing time complexity of a continuum domain is O(n2) while the complexity for 

a molecular domain is O(m2), where  m represents the number of atoms and n the number 

of finite element nodes.  Although the complexity representation is the same for these 

two domains, m is often significantly larger than n. O(m2) is approximately within the 



range O(n3) to O(n4), because m is approximately equivalent to n3/2~2. The domain 

decomposition approach will address this complexity difference to produce sub-domains 

adaptively, the representations of which include the complexity information for tasking 

scheduling purposes. This approach will help detach the domain decomposition technique 

from the task-scheduling advisor, as described in the following.  Further research will be 

conducted for multiple time steps as used in different length scales. 

 

In order to investigate the feasibility, reliability, and application of the proposed method, 

several high performance computing benchmark studies should be conducted. The studies 

include (1) parallel performance speedup and efficiency to evaluate the behavior of high-

performance computing, (2) detailed data communication (blocking, non-blocking, 

gather/scatter, one-site-communication effect using MPI2 features, parallel I/O, network 

impacts and network latency, load balance, etc.) among a group of processors and 

computational nodes to understand and reduce the communication loss, and 

(3) experiments of different HPC platforms and an analytical model of HPC scalability. 

 

3.5 One-dimensional examples 

To demonstrate the preliminary feasibility of the bridging domain multiscale method with 

high performance computing techniques, an experimental model has been developed. 

Similar to the previous example, the experiment is designed to observe the propagation of 

an imposed wave in a molecule chain passing from the molecular domain to the 

continuum domain. In this example, the bridging domain multiscale model contains 

10,000 atoms and 10,000 finite elements. Each finite element contains 9 atoms. 



Therefore, the molecule chain has 100,000 atoms, and the length of the chain is around 

20 micrometers. In this example, we mainly study the speedup of simulations due to high 

performance computing. The first computation is conducted on a local cluster (Microway 

64-bit AMD Opeteron 32 processors). Figure 9(a) presents the speedup performance. The 

parallel performance increase exhibits a quasi-linear behavior. In order to test the parallel 

scalability, we also employed the algorithm on NSF’s TeraGrid (NCSA) system with 100 

processors. The computational results are very promising, as shown in Figure 9(b). Due 

to the large memory required for the finite element method, a superlinear behavior is 

observed. The preliminary study successfully demonstrates the feasibility and 

applicability of the proposed model. The achieved computations provide significant 

experience for future multi-dimensional studies. 

 

(Figure 9) 

 

4. Grid computing techniques in multiscale simulations  

4.1 Nano-middleware 

During the last several years, Computational Grids have been widely used to address 

computationally intensive problems in science, engineering, and commerce24,25.  Several 

disciplines have employed Grid computing to obtain solutions to computationally 

intensive problems by developing domain-specific middleware.  This domain-specific 

middleware exploits characteristics of domain problems and aids the efficient use of 

Grids.  In a similar manner, Grid application-specific middleware must be developed for 

multiscale methods to capture important method characteristics. This paper develops a 



conceptual framework for multiscale methods that supports the location, allocation, and 

utilization of Grid resources to effectively and efficiently apply multiscale methods for 

nanotechnology applications. This middleware is referred to as nano-middleware in this 

paper. 

 

(Figure 10) 

 

The nano-middleware will be designed, as shown in Figure 10, to enable Grid computing 

of the bridging domain multiscale method.  For a given problem, the nano-middleware 

will schedule decomposed domains to appropriate Grid resources (e.g., clusters) to 

achieve load balancing and efficient use of resources. The primary components of the 

nano-middleware are:  

1)  A task-scheduling advisor that takes the result of domain decomposition as input to 

produce scheduling plans and achieve high-performance simulation through load-

balancing; 

2)  An information broker (IB) that leverages Grid information services to provide 

resource discovery26,27 functions to the task-scheduling advisor;   

3)  A data access module (DAM) that will manage the transfer, replication, and 

manipulation of data on the Grid.   

 

Components 1 and 2 primarily deal with computing strategies. Data handling will be 

supported by existing generic middleware. The task-scheduling advisor is the key 



element of nano-middleware for its impact on performance gains. It should be noted that 

the concept of proposed nano-middleware can be applied to other multiscale methods. 

 

4.2 Task scheduling advisor  

Task scheduling is used to schedule subdomains to an appropriate set of Grid resources to 

achieve optimal performance—tasks are allocated in a way that balances computation 

across the selection of available resources.  In the nano-middleware task-scheduling 

advisor, subdomains from the computational domain decomposition process are 

converted to tasks that are then placed in Grid resource queues in a specific order.  In 

practice, queues will be managed by local resource schedulers, such as Portable Batch 

Systems (PBS) and Condor.  The task-scheduling advisor is designed to achieve optimal 

performance by balancing tasks across available resources28.  The advisor generates a 

scheduling plan that determines the correspondence between tasks and the available Grid 

resources to which they are submitted.  

 

There are two general approaches to task scheduling: static and dynamic. When a static 

scheduling strategy is employed, the scheduling plan does not change until all tasks are 

completed29. In contrast, dynamic scheduling permits a plan to be altered while the set of 

tasks is being executed30.  Using dynamic task scheduling for the BDM method is 

difficult to accomplish for two specific reasons31. First, the computation required to 

implement dynamic scheduling is much greater than for static scheduling; dynamic 

scheduling introduces additional overhead penalties created by network latency and the 

execution of the code that monitors the task status.  Also, tasks are swapped between 



resources according to a dynamic performance evaluation. Second, fine granularity in 

individual subdomains, produced based on the BDM method, is desirable in order to 

achieve high levels of parallelism.  Results for these subdomains can be inexpensive to 

compute even if scheduled to a Grid resource having a small capacity.  Therefore, the 

time overhead that results from implementing dynamic scheduling on a task level may 

exceed the time required to compute results for an individual subdomain.   

 

Consequently, static scheduling strategies are developed to assign tasks based on 

computational intensity information for each subdomain, as well as the variability in the 

computing capacity of each Grid resource. Two principles are used to guide the 

development of static scheduling algorithms: (1) Grid resources with greater computing 

capacity are used before those with less capacity; and (2) tasks that are more (less) 

computationally intensive are assigned to Grid resources with more (less) computing 

capacity32. 

 

5. Conclusions 

Multiscale modeling and simulation has been at the forefront of nanotechnology research 

due to its ability to simulate larger systems than is possible with molecular dynamics. In 

this paper, we first introduced the bridging domain coupling method, which can 

efficiently couple molecular dynamics and the finite element method. A more powerful 

multiscale method can be extended to bridge a number of length and time scales via the 

bridging domain coupling technique.  

 



Recently developed multiscale methods, including the bridging domain multiscale 

method, still have limitations in length and time scales. This paper proposed an 

alternative solution for the above problem: high performance computing techniques 

including Grid computing techniques. The speedup study demonstrated the advantage of 

implementing high performance computing techniques into the bridging domain 

multiscale method. Furthermore, the conceptual idea of Grid-based multiscale modeling 

and simulation will benefit from rapidly developing computer science technologies. 

Finally, the proposed research in this paper can also be viewed as a framework for 

implementing high performance computing techniques in other potential multiscale 

methods.  
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Figure 1. Bridging domain coupling model of a molecule chain 
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(b) 

 

 

 

Figure 2. Wave propagation in 1D molecule chain: (a) Initial wave; (b) Wave propagation 



 

 

 

 

Figure 3. A bridging domain multiscale (BDM) method with different length scales 

 



  

 

 

Figure 4. Multiple time steps used in the proposed multiscale method 



 

 

 

 

Figure 5. Domain decomposition for the BDM method 



 

 

 

Figure 6. The inter-domain communication 



 

 

 

 

 

Figure 7. The bridging domain communication 



 

 
 
 
 

Figure 8. The workflow of the BDM method 



 

 

 

   

 

 

 

Figure 9. Speedup of 1D BDM method with high-performance computing; (a) on a 32-

node UI-IA32-HPC cluster with low memory; and (b) on 64-node NCSA-HPC cluster 

with larger memory 



 

 
 
 
 

Figure 10. The proposed nano-middleware architecture. Note: Globus is a software 

project, the purpose of which is to develop protocols and services for computational 

grids. Condor is a high throughput computing system. 

 


