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SUMMARY

A new homogenization technique, the temperature-related Cauchy–Born (TCB) rule, is proposed in this
paper with the consideration of the free energy instead of the potential energy. Therefore, temperature
effects at the nanoscale can be investigated using continuum approximation with the implementation of
the TCB rule. The TCB rule is verified via stress analyses of several crystalline solids. Temperature-
related material instability is also studied. In addition, a new hierarchical multiscale method is developed
through implementing the TCB rule into meshfree particle methods. Quasicontinuum meshfree particle
simulations are conducted to investigate bending of nanobeams, crack propagation in nanoplates and a
three-dimensional nanoindentation problem. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiscale modelling and simulation of nanostructured materials has been of interest in the
area of computational nanotechnology due to the limitations of molecular dynamics. Multiscale
methods can be classified into two types: hierarchical multiscale methods and concurrent multi-
scale methods. Hierarchical multiscale methods employ continuum approximations to approach
the nanoscale. A typical hierarchical multiscale method is the quasicontinuum method [1, 2].
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As a difference from hierarchical multiscale methods, concurrent multiscale methods couple dif-
ferent length scales, and appropriate numerical methods are employed in various scales to perform
simulation simultaneously. Some concurrent multiscale methods [3–5] couple the continuum model
and the molecular model. Although multiscale methods have potential to simulate large nano sys-
tems, most currently proposed multiscale methods still have limitations in length/time scales and
some difficulties in developing physical-based models.

Whether hierarchical or concurrent multiscale methods are used for modelling crystalline solids,
continuum approximation is conducted through a homogenization technique such as the Cauchy–
Born (CB) rule [6, 7]. The CB rule assumes that there are locally homogeneous deformations
in the continuum domain so that the constitutive relation is derived from atomic-level potential.
Consequently, the homogenization technique provides a link between molecular and continuum
models. However, the continuum model is usually assumed to be at a zero temperature. As a result,
temperature effects at the nanoscale cannot be investigated via most currently existed continuum
approximation. It has been shown that most physical phenomena of nanoscale materials and
devices [8, 9], particularly material failure and damping in devices, are temperature dependent.
Therefore, a temperature-related homogenization technique is needed to enhance multiscale/multi-
physics models.

One of the ways to introduce temperature effects is to employ potential that incorporate entropy
due to lattice vibration, for example, a local Einstein description [10] that is conceptually similar
to the coarse graining of vibrations in first-principles thermodynamics [11]. Shenoy et al. [12]
and Dupuy et al. [13] implemented a free energy minimization technique in the quasicontinuum
method, while Diestler and co-workers [14, 15] calculated isotropic stresses using the pseudoatomic
Hamiltonian. In this paper, we propose a new homogenization technique, called the temperature-
related Cauchy–Born (TCB) rule, for the continuum model in multiscale methods. Using the work
of Shenoy et al. [12] and Diestler et al. [14, 15] as a referent, we consider the Helmholtz free
energy, i.e. the effective energy in References [12, 14, 15]. Consequently, in the continuum domain
the energy contains not only the potential energy due to deformation of molecular structures but
also the thermal energy due to vibration of atoms. A stress–strain relation is given in the paper as a
generalized constitutive law that can be employed in the continuum model of multiscale methods.

Finite element (FE) methods [16] based on the quasicontinuum approach are often used to model
continua in both hierarchical and concurrent multiscale methods. Compared with conventional
FE methods, meshfree particle (MP) methods [17, 18] are more attractive for use in a variety
of applications [19–21], including problems involving moving boundaries, discontinuities, and
extremely large deformations. Belytschko and co-workers [22–24] performed stability analysis of
meshfree particle methods and concluded the meshfree particle methods with Lagrangian kernels
and stress points are stable methods. Given the advantages of meshfree particle methods, their
incorporation with a homogenization procedure will significantly benefit multiscale methods.

The outline of this paper is as follows: A new homogenization technique, the TCB rule, is
described in Section 2. Verification of the TCB rule is conducted in Section 3 via stress analyses
of two- and three-dimensional molecular structures. Temperature-related material stability analysis
is performed in Section 4 to demonstrate temperature effects on material instability. Section 5 intro-
duces meshfree particle methods, including their stability characteristics and integration schemes.
In Section 6 quasicontinuum meshfree particle methods are developed via the implementation of
the TCB rule. A cohesive crack model is also described so that crack propagation at the nanoscale
can be simulated using quasicontinuum meshfree particle methods. Several examples are studied
in Section 7 followed by the conclusions.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2099–2125
DOI: 10.1002/nme



A TEMPERATURE-RELATED HOMOGENIZATION TECHNIQUE 2101

2. TEMPERATURE-RELATED CAUCHY–BORN (TCB) RULE

2.1. Cauchy–Born (CB) rule

Generally, in a nanoscale continuum model, the potential energy depends on the elongations
and angle changes of the atomic bonds underlying the discretized continuum domain via the
conventional CB rule [6, 7]. The CB rule states that the deformation is locally homogeneous.
Therefore, the atomic-level lattice follows the deformation given by the macroscopically imposed
deformation gradient. For example, an undeformed lattice vector A in the reference configuration
can be mapped into a deformed lattice vector a in the current configuration via

a=FA, F= �x
�X

(1)

where F is the gradient of deformation, x are Eulerian co-ordinates and X are Lagrangian
co-ordinates. Consequently, the total potential energy, also called the strain energy of the con-
tinuum model, in the reference configuration �0 is defined by

WC =
∫

�0

wC (F) d�0 (2)

where wC is the strain energy per unit volume. Based on non-linear continuum mechanics [16],
the first Piola–Kirchhoff stress, P, is obtained from the first derivative of the strain energy density
to the gradient of deformation

P= �wC (F)

�F
(3)

The above equation usually serves as a constitutive relation implemented into continuum models
in either hierarchical or concurrent multiscale modelling of crystalline solids. For many important
situations such as in single-layer curved crystalline sheets, the exponential CB rule [25, 26] was
developed so that the deformation gradient can map the tangent space of the undeformed surface
to the one of the deformed surface.

2.2. Temperature-related Cauchy–Born (TCB) rule

In the TCB rule, we consider the Helmholtz free energy, i.e. the effective energy in References
[12–15], rather than the potential energy at the nanoscale. To obtain reasonable accuracy for the
Helmholtz free energy calculation in the nanoscale continuum model, the motion of an atom in
a solid is assumed to be harmonic [27]. We also neglect coupled vibration of different atoms.
Consequently, the atomic-level free energy, FH , of a crystalline solid, which contains N atoms at
a temperature of T , is expressed as [27]

FH = �(x) + �BT
∑
j
ln

[
2 sinh

(
h̄� j

2�BT

)]
(4)

where �(x) is the potential energy of the atoms in their equilibrium positions, x, at a temperature
of 0K; h̄ = h/2�, h is Planck’s constant; �B is the Boltzmann constant. The sum over j includes
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all the non-zero vibrational modes of the system. The frequencies, � j , are eigenvalues of the
dynamic matrix, D, which is calculated as

DI�J� = 1√
mImJ

(
�2�

�xI��xJ�

)
(5)

where xI� is the vibrational co-ordinate in direction � for atom I , and mI is the mass of atom I .
We take a local harmonic model [28] in this paper so that the principal frequencies of atom I

can be calculated by diagonalizing the local dynamic matrix whose determinant is expressed as
DI = (

∏n
j �I j )

2. Therefore, (4) can be simplified as

FH = �(x) + n�BT
∑
j
ln

(
h̄D

1/2n
I

�BT

)
(6)

where n is the number of degrees of freedom per atom. In the continuum approach to a crystalline
solid with the TCB rule, we assume that atoms not only have locally homogeneous deformation
as in the conventional CB rule but also have the same vibration mode locally [29] at a given
temperature. Therefore, all the local atoms have the same dynamic matrix that is a function of the
deformation gradient.

In summary, the proposed TCB rule assumes: (1) atoms have locally homogeneous deformation;
(2) atoms have the same local vibration modes; (3) the vibration of an atom is harmonic; and
(4) coupled vibration of different atoms is negligible. In the continuum model of a crystalline solid
that contains N atoms at a temperature field of T (X), the total free energy, WH , is written as

WH (F, T ) =
∫

�0

wC (F) d�0 + n�B

∫
�0

�nT ln

[
h̄(D(F))1/2n

�BT

]
d�0

=
Nq∑
i

wC (Fq
i )Ai + n�B

Nq∑
i
nqi T

q
i ln

[
h̄(D(Fq

i ))
1/2n

�BT
q
i

]
(7)

where �n is the number of atoms per unit volume; Nq is the number of quadrature points in the
continuum model; and Ai is the volume associated with one quadrature point, Xq

i , which represents
nqi atoms. The first term on the RHS of the above equation is the continuum level strain energy
when temperature is equal to zero. In the continuum model, the deformation gradient and the
temperature are evaluated at each quadrature point. With the TCB technique, all the bonds and
atoms in Ai are assumed to be at the same deformation and the same temperature. Consequently,
the strain energy density, wC , and the dynamic matrix can be calculated using the unit cell model
for each quadrature point.

As a difference from other research [12–15], we modify (3) to calculate the continuum-level
first Piola–Kirchhoff stress for continuum approach to finite-temperature nano systems as follows:

P(F, T ) = �wH (F, T )

�F
(8)

where wH is the free energy density, and it is a function of the deformation gradient and the
temperature. Equation (8) can serve as a temperature-dependent constitutive relation that can be

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2099–2125
DOI: 10.1002/nme



A TEMPERATURE-RELATED HOMOGENIZATION TECHNIQUE 2103

implemented in most hierarchical and concurrent multiscale methods to investigate temperature-
related physical behaviour of nanostructured materials

3. VERIFICATIONS OF THE TCB RULE

To verify the proposed TCB rule, we perform stress analyses of various crystalline solids at any
given deformation gradient and temperature using the continuum approximation with the TCB rule.
Then, we compare the continuum-level Cauchy stresses with the atomic-level ones from molecular
simulations. It should be noted here that the simulated objects are assumed to be canonical
ensembles subject to any given deformation and temperature. Either the Monte Carlo method
or molecular dynamics can be used to obtain the same stress state in the canonical ensemble
at thermodynamic equilibrium within any given boundary condition. In this paper, we employ
molecular dynamics with the periodic boundary conditions and the Berendsen thermostat [30].
The atomic-level Cauchy stresses [31], rA, of the simulated object is calculated via

rA = 1

V

∑
I

(
1

2

∑
J (�=I )

rI J ⊗ fI J

)
, fI J = ��(rI J )

�rI J

rI J
rI J

(9)

where V is the total volume; rI J (= rJ − rI ) and fI J represent the interatomic distance and
force between atoms J and I , respectively; ⊗ denotes the tensor product of two vectors. The
sign convention adopted here for fI J that is positive for attraction and negative for repulsion.
Accordingly, a positive stress indicates tension and a negative stress indicates compression.

When employing the continuum approximation with the TCB rule, the first Piola–Kirchhoff
stress, P, is calculated via (8). Then, the continuum-level Cauchy stress, rC , is computed [16] as

rC = J−1F · PT, J = det(F) (10)

where J is the determinant of deformation gradient F.

3.1. Two-dimensional triangular lattice

A two-dimensional crystalline plate with the triangular lattice, as shown in Figure 1, is considered
first. This nanoplate contains 1116 atoms, and its length and width are 30 nm, respectively. Each
atom has a mass of 12 amu. We employ the following Lennard–Jones 6–12 potential function to
describe the interatomic interaction between nearest neighboured atoms

�(l) = 4�

[
1

4

(
l0
l

)12

− 1

2

(
l0
l

)6
]

(11)

where l is the deformed bond length, l0 = 1 nm is the undeformed bond length, and �= 8.25 aJ is
the depth of the energy well.

Based on the assumption of the TCB rule, when the nanoplate is subjected to a deformation

gradient, F=
[
F11
F21

F12
F22

]
, and a finite temperature, all the unit cells (shown in Figure 1) are deformed

identically, and all the atoms have the same harmonic vibration mode. Therefore, the strain energy
density at the temperature of 0K is calculated from the potential of the unit cell. The dynamic
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unit cell

Figure 1. A two-dimensional Lennard–Jones crystal with a triangular lattice.

matrix of the atom located in the centre of the unit cell can also be computed. They are:

wC = 2√
3l0

[�(l1) + �(l2) + �(l3)] (12)

Di j =
3∑

k=1

[
�′′(lk)rki rk j

(
l0
lk

)2

− �′(lk)rkirk j
l20
l3k

+ �′(lk)
lk

	i j

]
(13)

where lk = l0
√
r2k1 + k2k2 (k = 1, 2, 3) and

r11 = F11, r12 = F12, r21 = 1
2 F11 −

√
3
2 F12

r22 = 1
2 F21 −

√
3
2 F22, r31 = 1

2 F11 +
√
3
2 F12, r32 = 1

2 F21 +
√
3
2 F22

The atomic-level and continuum-level Cauchy stresses are computed via (9) and (10) for any
given deformation gradient and temperature. Figure 2 shows the comparison of each component of
Cauchy stresses at various temperatures when two different deformation gradients are given.We also
calculate Cauchy stresses using the continuum model with the conventional CB rule to demonstrate
the advantages of the TCB rule. The continuum approximation with the conventional CB rule gives
constant stresses at different temperatures since temperature effects are not considered in the CB
rule. If temperature effects are considered, the continuum-level normal stresses, calculated based on
the TCB rule, decrease with the increasing temperature due to thermal expansion. The results agree
with the molecular dynamics solutions. Shear stresses calculated from continuum approximations
with either the conventional CB or the TCB rule are supported by molecular dynamics simulation
because temperature has no effects on shear stresses.

3.2. Graphene sheet

As a more practical example, we consider temperature effects on stress analysis of a graphene
sheet. Figure 3 shows the honeycomb multi-lattice of a graphene sheet with its unit cell in the
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Figure 2. Comparison of Cauchy stress components at various temperatures in a two-dimensional
Lennard–Jones crystal subjected to the following deformation gradients: (a) F11 = 1.001, F12 = F21 = 0.0,

F22 = 1.0; and (b) F11 = 1.001, F12 = 0.002, F21 = 0.0, F22 = 1.0.

η
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A01
A1

A2

Figure 3. A graphene sheet and its unit cell.

dashed box. There are three inequivalent bonds, A0i (i = 1, 2, 3) in the reference configuration, i.e.
the undeformed configuration. It should be noted that the graphene sheet is a Bravais multi-lattice
with two basic nuclei: a black dot and a white dot shown in Figure 3. Consequently, when the
graphene sheet is subjected to a homogeneous deformation, one cannot use only one basic nuclei
and two simple Bravais lattice vectors to define the entire lattice. Therefore, a shift vector, g,
known as the inner displacement [32], must be introduced as shown in Figure 3 to define the
relative displacement of the basic nuclei. The inner displacement represents an internal model
of deformation in the unit cell instead of the homogeneous deformation sustained by the entire
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graphene sheet. Then, the deformed lattice vectors Ai is written as

Ai =A0i + g (14)

Since inner displacements are in the internal equilibrium, we neglect the temperature effects on
inner displacements. Similar to Reference [32], the inner displacement is calculated by minimizing
the strain energy density with respect to g for a given deformation of the lattice, i.e.

g(F) = arg

(
min
g

wC (F, g)

)
⇒ �wC (F, g)

�g

∣∣∣∣
F

= 0 (15)

When a graphene sheet is subjected to a homogeneous deformation and a particular temperature,
the positions of the atoms in the current configuration, i.e. the deformed configuration, are expressed
in terms of the deformation gradient F and the inner displacement g. Therefore, the total free energy
of the graphene sheet is computed as

WH (F, g, T ) = AwC (F, g) + N�BT ln

[
h̄(D(F, g))1/2n

�BT

]
(16)

where A is the area of the simulated graphene sheet, and N is the total carbon atoms. Equations (8)
and (10) are thereafter employed to calculate the continuum-level Cauchy stress.

In this example, we consider a graphene sheet containing 800 atoms to be subjected to a

deformation gradient of F=
[
1.02
0.0

−0.01
1.00

]
. In our calculation, we use a modified Morse potential

function [33] as follows to describe the interatomic interaction:

E = Estretch + Eangle

Estretch = De{[1 − e−�(r−r0)]2 − 1} (17)

Eangle = 1
2k
(
 − 
0)

2[1 + ks(
 − 
0)
4]

where Estretch is the bond energy due to bond stretching or compressing, Eangle is the bond energy
due to bond angle-bending, r is the current bond length, and 
 is the angle of two adjacent bonds
representing a standard deformation measure in molecular mechanics. The parameters are:

� = 2.625× 1019 nm−1, De = 0.603105 aJ

r0 = 0.142 nm, 
0 = 2.094 rad

k
 = 1.13 aJ/rad2, ks = 0.754 rad−4

(18)

The calculated normal Cauchy stresses from molecular dynamics and the continuum approxi-
mation with either the conventional CB rule or the TCB rule are compared in Figure 4. We can also
conclude that the continuum-level Cauchy stresses based on the continuum approximation with
the TCB rule are in good agreement with those from molecular dynamics at various temperatures.
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Figure 4. Normal Cauchy stresses of a graphene sheet subject to a deformation gradient of F11 = 1.02,
F12 =−0.01, F21 = 0.0 and F22 = 1.00.

Figure 5. Geometry of a simple cubic lattice and the unit cell (dash lines).

3.3. Three-dimensional simple cubic lattice

A three-dimensional simple cubic lattice with each dimension of 5 nm is studied in this example.
Figure 5 shows the basic geometry of this cubic lattice and its unit cell. We also employ the
Lennard–Jones 6–12 potential and the parameters are the same as in (11).

To include a large range of temperatures, we investigate the Cauchy stress evolution in the
simulated lattice at various temperatures from 0 to 1500K, subject to the following deformation
gradient:

F=

⎡⎢⎢⎣
1.01 0.05 0.03

0.0 1.02 0.04

0.0 0.0 1.03

⎤⎥⎥⎦ (19)
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Table I. Comparison of normal Cauchy stresses (MPa) at various temperatures for a three-dimensional
simple cubic lattice subjected to the deformation gradient in (19).

Temperature 0K 300K 900K 1500K

CB 5128.15 5128.1 5128.15 5128.15
�xx TCB 5128.15 5092.4 5021.12 4949.77

MD 5128.15 5083.5 5043.26 4998.69

CB 9734.92 9734.9 9734.92 9734.92
�yy TCB 9734.92 9695.0 9615.35 9535.63

MD 9734.92 9703.5 9632.53 9569.72

CB 13 035.5 13 035.0 13 035.5 13 035.5
�zz TCB 13 035.5 12 991.0 12 903.8 12 815.9

MD 13 035.5 13 007.0 12 936.4 12 860.7

Since there are no temperature effects on shear stresses, we only compare the normal Cauchy
stresses from molecular dynamics simulation and those from the continuum approximation with
either the CB rule or the TCB rule as shown in Table I. With the consideration of temperature
effects, the results from the continuum approximation with the TCB technique match the molecular
dynamics solutions better than those from the continuum approximation with the CB rule.

4. TEMPERATURE-DEPENDENT MATERIAL STABILITY

4.1. Material stability analysis with the TCB rule

At the nanoscale, material failure is temperature dependent. With the proposed TCB rule, we study
temperature effects on material stability using a linearized stability analysis technique [24]. In
order to conduct a stability analysis, we first derive the linearized equations. Assume perturbations
in the displacement

u=u + ũ (20)

where the superposed ∼ denotes the perturbation. In general, assume that the perturbation of
displacements is in the form of a plane wave

ũ= g ei�t+i�n0·X (21)

where g is polarization of the wave, � is wave number, � is frequency and n0 is the normal
direction of the wave front with respect to the initial configuration.

The perturbation solutions are governed by the following perturbed governing equations:

�0 ¨̃u=∇X · P̃T (22)

where �0 is the initial density, ∇X is the gradient with respect to the material co-ordinate X and
the superposed dots denote material time derivatives.
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The perturbed first Piola–Kirchhoff stress tensor is

P̃i j =Ci jkl F̃kl (23)

where Ci jkl is the first tangential stiffness tensor, and it is

Ci jkl = �2wH (F, T )

�Fi j �Fkl
(24)

Then, the perturbed equation, (22), yields

�2gi − �2

�0
C jikln

0
j n

0
l gk = 0 (25)

or

det

[
�2	ik − �2

�
C jikln

0
j n

0
l

]
= det

[
�2	ik − �2

�0
Aik

]
= 0 (26)

where Aik =C jikln0j n
0
l is the acoustic tensor.

The strong ellipticity condition can be expressed as

C jikln
0
j n

0
l hi hk>0 ∀h and n0 (27)

In other words, if the matrix A is positive definite, its determinant will be greater than zero.
However, the inverse is not true. A can be non-positive definite even if its determinant is positive.
We have to solve (26) to find the stable domain where all of the frequencies are real.

4.2. Stability analysis of a molecular chain

A molecular chain is considered here, and the Lennard–Jones 6–12 potential in (11) is employed
to describe the atomistic interaction with the energy well depth of � = 82.5 aJ. Linearized stability
analysis, i.e. (25), yields that the stability is governed by

�2 − C�2

�0
= 0 (28)

and

C = l0

(
�′′(l) + �BT

2

�(4)(l)

�′′(l)
− �BT

2

[
�′′′(l)
�′′(l)

])2

(29)

It can be seen that the molecular chain becomes unstable only when C<0. The criterion for material
stability of the molecular chain is

�′′(F) + �BT

2

�(4)(F)

�′′(F)
− �BT

2

[
�′′′(F)

�′′(F)

]2
� 0 (30)

where the deformation gradient is F = l/ l0.
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Figure 6. Stable domain of 1-D molecular chain.

Figure 6 shows the stable domain of the molecular chain based on the criterion of (30). Various
deformation gradients and temperatures up to 3000K are considered. It can be seen that the stable
domain gets smaller with increasing temperature. It should be noted that the locally harmonic mode
for atomic vibration might be invalid at higher temperatures that are close to the material melting
temperature. In addition, molecular dynamics is conducted at selected deformation gradients and
temperatures to verify the continuum material stability analysis. In the molecular dynamic model,
the molecular chain contains 200 atoms. Instability occurs when the length of one bond is larger
than the cutoff distance of the Lennard–Jones potential function. In other words, the molecular
chain is broken. In Figure 6, solid circles represent the stable molecule chains, while the empty
circles represent the unstable molecular chains. As evidenced, the molecular dynamics results
support the linearized stability analysis.

4.3. Stability analysis of a two-dimensional lattice

We next consider a two-dimensional nanostructured plate with a square lattice. The Lennard–Jones
potential in (11) is still used here as the potential function with the parameters of � = 8.25 aJ and
l0 = 1 nm. Based on the TCB rule, the first tangential stiffness tensor Ci jkl is written as

Ci jkl = �2wC

�Fi j�Fkl
+ 1

V

(
�BT

2D

�2D
�Fi j�Fkl

− �BT

2D
2

�D
�Fi j

�D
�Fkl

)
(31)

where V is the volume of the unit cell of this square lattice. The potential density, wC , and the
determinant of the dynamic matrix, D, are functions of the deformation gradient, F.

In two dimension, n01 = cos 
 and n02 = sin 
 and 
 represents the wave front direction. For a

given deformation gradient F=
[

�1
0

0
�2

]
[23], if there exists �I such that Im(�I )<0 for any 
,
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Figure 7. Stable domains at various temperatures.
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Figure 8. Stable domains of different materials at room temperature of 300K.

the nanostructured material will be unstable. The stable domain for the material considered above
is shown in Figure 7. The entire compressive domain (0<�i�1) is stable. However, for sufficiently
large extensional deformations, the material is unstable. It also can be seen that the stable domain
is smaller at a higher temperature.

To study temperature effects on nanostructural material instability, we employ various
energy well depths, �, in the Lennard–Jones potential function (11). Three values are consid-
ered: �1 = 8.25 aJ for material 1, �2 = 0.825 aJ for material 2, and �3 = 0.0825 aJ for material 3.
Obviously, material 1 is 10 times stiffer than material 2 which is 10 times stiffer than material
3. At zero temperature, those three materials have the same material stability. However, at a
room temperature of 300K, the stiffest material (material 1) has the largest stable domain, shown
in Figure 8.
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5. MESHFREE PARTICLE METHODS

5.1. Meshfree particle methods

In continuum mechanics, the Galerkin weak form of the momentum conservation equation is∫
�0

	ui�0üi d�0 =
∫

�0

	ui�0bi d�0 −
∫

�0

�(	xi )

�X j
Pi j d�0 +

∫
�0

	ui t i d�0 (32)

where �0 is the initial density, P is the first Piola–Kirchhoff stress tensor, X are the material
(Lagrangian) co-ordinates, b is the body force per unit mass, 	u is the test function, t is the
prescribed boundary traction, and u is the displacement and the superposed dots denote material
time derivatives. It should be noted that (32) is written under the reference configuration, �0.

In meshfree particle methods, the field of displacements can be approximated as

uh(X, t) =∑
I

wI (X)uI (t) (33)

where wI (X) are called Lagrangian kernels since they are functions of the material (Lagrangian)
co-ordinates. If the kernel functions are functions of the spatial (Eulerian) co-ordinates, x, they are
called Eulerian kernels. In this paper, Lagrangian kernels are applied unless otherwise noted. The
Lagrangian kernel functions can be obtained from the weight function, i.e.

wI (X) =w(X − XI ) = W (X − XI )∑
K W (X − XK )

(34)

In our analysis, a quartic spline weight function is used:

W (R) =

⎧⎪⎨⎪⎩1 − 6

(
R

R0

)2

+ 8

(
R

R0

)3

− 3

(
R

R0

)4

, R�R0

0, R>R0

(35)

where R =‖X−XJ‖ and R0 is the support radius of the influence domain as shown in Figure 9.
Obviously, the kernel functions reproduce the constant functions, i.e.

∑
I wI (X) = 1, but not

the linear functions. In other words, one can find that
∑

I wI,i (X)XI j �= 	i j . Belytschko
et al. [18] developed a correction that enables the derivatives of the constant or linear functions to
be reproduced exactly.

XI

R0
X

Figure 9. The domain of influence of particle XI .

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2099–2125
DOI: 10.1002/nme



A TEMPERATURE-RELATED HOMOGENIZATION TECHNIQUE 2113

Substituting (33) into the weak form of (32), the following discrete equations of motion can be
obtained:

mI üi I = f exti I − f inti I , mI = �0V
0
I (36)

where V 0
I is the volume associated with particle I , f exti I and f inti I are the external and internal nodal

forces, respectively, given by

f exti I =
∫

�0

�0wI bi d�0 +
∫

�t
0

wI t i d�0 (37)

f inti I =
∫

�0

�wI (X)

�X j
Pji d�0 (38)

5.2. Numerical integration schemes

A background mesh was used in the element-free Galerkin (EFG) method [34], so that Gaussian
quadrature can be used for numerical integration of (38). However, it is computationally intensive.
Beissel and Belytschko [35] proposed a nodal integration scheme to reduce the computation time,
where the internal forces can be calculated via

f inti I =∑
J
V 0
J
�wI (XJ )

�X j
Pji (XJ ) (39)

Another numerical integration scheme used in meshfree particle methods is the stress point
integration [36]. Stress points play the same role as additional quadrature points during numerical
integration. Such additional quadrature points (stress points) are also called slave points/particles,
and the original particles are called master particles. The kinetic variables of stress points, such
as displacements and velocities, are evaluated from the neighbouring master particles by the
approximation (33).

If master particles are arranged irregularly for an object with arbitrary geometry, triangulation
is usually used to construct a virtual triangular (or tetrahedral in 3-D) mesh. The stress points are
then placed at the centre of triangles (or tetrahedrons). Next, the Voronoi cells are constructed
for both master particles and stress points, as shown in Figure 10. The volumes of these cells are
represented as V 0M

J and V 0S
J associated with master particles and stress points, respectively. With

the stress point integration, the numerical integration for (38) can be written as:

f inti I = ∑
V 0M
J

�wI (XM
J )

�X j
Pji (XM

J )

+∑V 0S
J

�wI (XS
J )

�X j
Pji (XS

J ) (40)

5.3. Stability of meshfree particle methods

There are two sources of instability that exist in meshfree particle methods: (1) rank deficiency
of the discrete equations, and (2) distortion of the material instability. The latter leads to the
so-called tensile instability. Belytschko and Xiao gave a linearized stability analysis of the discrete

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2099–2125
DOI: 10.1002/nme



2114 S. XIAO AND W. YANG

stress points

master particles

Figure 10. Voronoi cells in meshfree particle methods.

equations for the meshfree particle methods [22]; this is often called a von Neumann stability
analysis.

When using the nodal integration scheme, an instability occurs in meshfree particle methods due
to rank deficiency of the discretization of the divergence. This instability makes the equilibrium
equations singular regardless of the value of the stress. Such instability occurs when the nodal
integration scheme is employed. Stress points are inserted to eliminate this instability. However,
tensile instability occurs in meshfree particle methods as long as Eulerian kernels are employed
even when the stress point integration scheme is utilized. Xiao and Belytschko [23] performed
material stability analysis of meshfree particle methods. They pointed out that Eulerian kernels
severely distorted the material instability while Lagrangian kernels can exactly reproduce material
instability. Rabczuk et al. [24] concluded that a meshfree particle method with Lagrangian kernels
and stress point integration is a stable numerical method.

6. QUASICONTINUUM MESHFREE PARTICLE METHODS

6.1. Implementation of the TCB rule

When using meshfree particle methods for nanoscale simulation, the TCB rule results in a con-
stitutive relationship due to molecular properties. For instance, we consider a Voronoi cell CI
associated with a particle PI . PI can be any master particle or stress points in the simulated
domain. During the implementation of the TCB rule in meshfree particle methods, the following
assumption and procedures are conducted:

• The lattice in cell CI is assumed to be subjected to a deformation gradient as that of particle
PI . Therefore, the strain energy density at zero temperature can be calculated via a unit cell.

• All the atoms in cell CI are assumed to have an identical harmonic vibration mode. Then,
a dynamic matrix can be calculated via the unit cell for all the atoms in this cell.
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B

Crack I

J

K

Figure 11. Visibility criterion in meshfree particle methods.

• The molecular domain in cell CI is assumed to be at a constant temperature as that of particle
PI . The free energy density is thereafter computed via (7), and both master particles and
stress points are quadrature points in meshfree particle methods.

• Once free energy density is calculated, stresses of particles can be obtained through (8) and
(10). Numerical integration will be performed to compute nodal forces (37) and (38), and
discrete equations (36) will be thereafter solved.

6.2. Modelling of fracture at the nanoscale

When employing FE methods in continuum models at the nanoscale, the approximated molecular
lattices are always assumed to be perfect. Such hierarchical multiscale methods have difficulties
in studying nanostructured material failure. Meshfree particle methods have advantages in dealing
with both large deformation problems and problems with moving discontinuities such as fracture
mechanics. Such advantages will benefit the developed hierarchical multiscale method in which
a meshfree particle method is employed as well as the TCB rule. In this paper, we introduce a
cohesive model in meshfree particle methods to model cracks at the nanoscale.

In two-dimensional problems, a crack is modelled in the meshfree particle method by defining a
line segment internal to the domain as shown in Figure 11. The domains of influence for particles
near the crack are truncated whenever they intersect the crack surface so that a particle on one
side of the crack will not affect particles on the opposite side of the crack. This technique was
called the visibility criterion by Krysl and Belytschko [37], as illustrated in Figure 11. The domain
of influence can be considered as the line of sight and the crack can be considered as an opaque
boundary. Whenever the line of sight meets the opaque boundary, the domain of influence is cut. In
Figure 11, if we plan to search the neighbour particles for the particle I, the particle K is included
but not the particle J, since the latter is not visible for the particle I due to the block of the crack.
Other techniques, the diffraction method and the transparency method [38], can provide continuous
and smooth approximations near non-convex boundaries. For simplification, we use the visibility
criterion in this paper.

The crack propagation criterion used in our study is similar to the cohesive zone model [39].
As shown in Figure 12, two crack tips should be monitored in the cohesive zone model: one is
called physical tip, which is a ‘real’ crack tip in physics, and the other is mathematical tip, which
means it is a fictitious tip ahead of the physical one. The physical meanings of those two tips at
the nanoscale are described as follows. It is known that crack propagation involves bond breakage
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cohesive traction

Mathematical tip

Physical tip

Figure 12. Cohesive zone model for crack propagation.
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FE nodes

particles
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Figure 13. Projection of cohesive traction.

so that the physical tip moves to the location where bonds are broken. Such a tip can be viewed
as a ‘real’ crack tip at the macroscale. On the other hand, the mathematical tip moves to the
location where bonds become unstable. An unstable bond means that the interatomic bond force
decreases while the bond length increases. Between the mathematical tip and the physical tip,
there is a so-called cohesive zone, where the cohesive traction is applied on the two facets of the
cohesive zone. It should be noted here that the mathematical tip is used to determine the domain
of influence in meshfree particle methods via the visibility criterion. The cohesive traction, s, are
taken as external forces in meshfree particle simulation and they are derived from

s= �ŵH (D, T )

�D
(41)

where D is the crack opening displacement vector. ŵH (D, T ) is the free energy per unit length
along the cohesive zone and can be calculated via the TCB rule.

In meshfree particle methods, the cohesive tractions can be projected into consistent nodal
forces [39] without introducing additional degrees of freedom. In order to represent the surface
geometry and calculate the cohesive traction, a parameterization must be implemented. As shown
in Figure 13, we define a local co-ordinate system in the reference configuration as well as the FE
points along the cohesive zone. The crack opening displacement vector D may be written as

D() =u+() − u−() = ∑
P∈N+

wp()up − ∑
P∈N−

wp()up (42)

where  are local co-ordinates; u+ and u− are displacements of upper and lower facets of the
cohesive zone, respectively; wp is the meshfree shape function associated with particle p involved
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in the truncated neighbourhood of the FE point, up is the displacement of particle p. In a variational
setting, the contribution to the virtual work from cohesive traction is

	W =
∫

�0

s · 	D (43)

where �0 is the cohesive zone in the reference configuration; and 	D is the variation in the surface
opening displacement. On the other hand, in terms of the variation in the particle displacements,
up, the work increment due to the crack opening can be written as

	W =∑ fp · up (44)

where fp is the particle force projected from the cohesive traction s. Therefore, the nodal force
due to the cohesive traction is computed as

f pi =
∫

�0

∑
j

�� j

�u pi
� j d� (45)

where

��

�u pi
=
{

wp	i j

−wp	i j
for

p ∈ N+

p ∈ N− (46)

7. EXAMPLES

7.1. Bending of a nanobeam

We first consider the bending of a nano cantilever beam containing the triangular lattice to demon-
strate nanoscale simulation using the meshfree particle method. The length of the nanobeam is
L = 270 nm and its height is H = 15.6 nm. This nanobeam contains 5140 atoms. In this example,
the temperature is assumed to be zero. A quadratic potential function is used to approximate the
interaction between nearest atoms and it is

U (l) = 1
2k(l − l0)

2 (47)

where k = 10 000 nN/nm and l0 = 1 nm.
In the meshfree particle model of this nanobeam, 250 master particles are employed. During

the simulation, the prescribed displacement will be increased by �d = 3.6 nm per calculation step.
After 50 steps, the nanobeam will be bent as the final configuration shown in Figure 14 in which
the stress contours from meshfree particle method simulation are compared well with those form
molecular mechanics calculation.

Figure 15 illustrates the evolution of the strain energy. Meshfree particle simulations with
different numbers of master particles are conducted and compared with molecular mechanics
calculations. It can be seen that when even 250 master particles are employed in the meshfree
particle method, the evolution of the strain energy matches with the molecular mechanics calculation
very well. If 1000 or more particles are used in the simulations, the evolution of the nanobeam’
strain energy is almost identical to that from the molecular mechanics calculation.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2099–2125
DOI: 10.1002/nme



2118 S. XIAO AND W. YANG

x (nm)

y 
(n

m
)

0 50 100 150 200 250

-150

-100

-50

0

x (nm)

y 
(n

m
)

0 50 100 150 200 250

-150

-100

-50

0
200
155
110
65
20
-25
-70
-115
-160
-205
-250

xy

200
155
110
65
20
-52
-70
-115
-160
-205
-250

xy

(a) (b)

Figure 14. Deformed configurations and stress contour of the nanobeam: (a) meshfree particle
method; and (b) molecular mechanics.
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Figure 15. Comparison of evolution of the nanobeam potential.

In this example, we also study the convergence of the quasicontinuum meshfree particle method,
shown in Figure 16, by using the l2 error in displacement. The error in displacement is defined as

Error= ‖uMM − uPM‖2
‖uMM‖2 (48)

where uMM and uPM are the atomic displacements from the molecular mechanics calculation and the
meshfree particle method, respectively. Note here that one can calculate the atomic displacements
from the particle displacements in the meshfree particle method based on the meshfree particle
approximation. The norm is defined as follows:

‖u‖2 =
(∫

�
‖u‖2

)1/2

(49)
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Figure 16. Convergence of the quasicontinuum meshfree particle method.

weakened bond

weak interface

Figure 17. A nanoplate with the triangular lattice containing an initial edge crack.

7.2. Crack propagation in a nanoplate

One benefit of the quasicontinuum meshfree particle method is that it is possible to investigate the
crack propagation mechanism at the nanoscale using continuum approximation. With the imple-
mentation of the TCB rule, the temperature effects can be investigated using the quasicontinuum
meshfree particle method. In this example, crack propagation in a nanoplate with the triangular
lattice, shown in Figure 17, is studied. We first consider the nanoplate consisting of 256 961 atoms
with the following dimensions: length of 800 nm and width of 280 nm. Each atom has a mass of
1384 amu. Since the bond length is 1 nm, the density of this nano material is 2636 kg/m3. An edge
crack is initiated in the middle of the plate by taking out a number of bonds, and the initial crack
length is 20 nm. For simplification, the crack is restricted to propagate along the weak interface
by assuming that only weakened bonds can be broken. We employ a harmonic potential function
to describe interatomic interactions between the nearest neighbouring atoms, except for weakened

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2099–2125
DOI: 10.1002/nme



2120 S. XIAO AND W. YANG

crack opening (nm)

co
h

es
iv

e 
tr

ac
ti

o
n

 (
n

N
/n

m
)

1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4
1000 K

100 K

300 K

Figure 18. The relation of cohesive traction and crack opening along the weak interface.

bonds. The harmonic potential function is

�1(r) = 1
2k(r − r0)

2 (50)

where the length of the undeformed bond is r0 = 1.0 nm, and the spring constant is k = 15.6 nN/nm.
A Lennard–Jones potential with a cutoff distance of 2.0 nm, as described in (11), is used for
weakened bonds. It should be noted here that the tangential stiffness of the weakened bond is
equal to the spring constant, k, so that the parameters of the Lennard–Jones potential are: �= 0.22 aJ.

The nanoplate is loaded in mode I via prescribed displacements with the strain rate of
1× 10−8 fs−1. We first conduct molecular dynamics simulations, the results of which will used
to verify the quasicontinuum meshfree particle method. Three various temperatures—100, 300,
and 1000K—are considered. It should be noted that such a molecular structure was utilized by
Buehler et al. [40] to demonstrate supersonic crack speed at the nanoscale. Th difference is that we
employ the Berendsen thermostat [30] to maintain a constant temperature all over the plate during
the molecular dynamics simulations, so, we do not observe the same phenomenon as in [40].

In the quasicontinuum meshfree particle model, there are 13 600 particles. In this example, the
nodal integration scheme is used so that particles are quadrature points. Based on the assumption
of the TCB rule, the free energy per length along the cohesive zone is

FH =�(l) + �BT ln

(
h̄
√

�′′(l)
�BT

)
(51)

The cohesive traction, s, is calculated as

�= �′(l) + �BT

2

�′′′(l)
�′′(l)

(52)

Figure 18 shows the relation of the cohesive traction and the crack opening along the weak
interface. We can see that the traction-opening slope gets lower, i.e. the crack can propagate easier,
at a higher temperature. On the other hand, the triangular lattice with the harmonic bonded poten-
tial function exhibits a special characteristic in which the Young’s modulus is higher at a higher
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Figure 19. Comparison of crack propagation speed at different temperatures.

temperature. The moduli are 20, 25, and 36GPa at temperatures of 100, 300, and 1000K, respec-
tively. The similar Young’s moduli are obtained when performing molecular dynamics simulations
at those three temperatures. Consequently, the Rayleigh speed is higher at a higher temperature.
The crack speeds are expected to be larger at higher temperatures, as illustrated in Figure 19.

Figure 19 shows that cracks start to propagate around 0.3 ns and crack speeds become constants
within 0.1 ns. The terminal constant crack speeds are 600, 1100, and 1350m/s at 100, 300, and
1000K, respectively. All the calculated crack speeds are lower than the Rayleigh wave speeds.
Figure 19 also shows that the same phenomenon can be observed when performing molecular
dynamics simulations.

Although a globally constant temperature was assumed in the above simulations, the continuum
approximations with the TCB rule can deal with the object in a temperature field. Since it is
assumed that atoms have the same harmonic vibration mode locally in the TCB rule, the free
energy can be evaluated at the discretized particles with a locally constant temperature in the
continuum approximations. Here, we investigate crack propagation in a large nanoplate with a
length of 1600 nm and a width of 280 nm. The nanoplate is subject to a linear temperature field
from 100 to 1000K along its longitudinal direction. Consequently, the crack will propagate from a
low temperature region to a high temperature region, and the crack speed will be linearly increased,
as illustrated in Figure 20.

7.3. Nanoindentation

Nanoindentation is similar to conventional hardness testing performed on the nanoscale. The force
required to press a diamond indenter into a material is measured as a function of indentation depth.
Force–depth curves obtained during indenting indicate material properties, such as elastic modulus
and hardness. In this example, a nanoscale indenter with the radius of 100 nm is pressed into a crys-
talline with the simple cubic lattice. Lennard–Jones potential, as described in (11) with l0 = 1 nm
and �= 8.25 aJ, is employed for describing interaction between nearest atoms in the lattice. The
mass of each atom is 60 amu. The crystalline has the dimensions of 500 nm× 500 nm× 250 nm
and contains 65 millions atoms. Therefore, the simulation of nanoindentation is especially appeal-
ing for nanoscale continuum approximation since the experimental systems remain larger than the
biggest model that can be handled by molecular dynamics. Within the quasicontinuum meshfree
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Figure 20. Crack propagation speed in linear temperature field.

Figure 21. Simulation of nanoindentation using the quasicontinuum meshfree particle method.

particle model, 8125 particles are used to simulate this nanoindentation problem. The indenter is
assumed to be rigid in this example and the deformed configuration of the nanoscale crystalline
material is shown in Figure 21.

Figure 22 illustrates the force–depth relations at various temperatures. It can be seen that higher
temperature results in lower force loaded on the indenter to reach the same depth. Here we assume
that no dislocation occurs so that there are no kinks appearing on the force–depth curves as
demonstrated in molecular or multiscale simulations [41].

In addition, we investigate the temperature effects on the force loaded on indenters for different
materials. We choose different energy well depths, �, in the Lennard–Jones potential function (11)
so that the corresponding material stiffnesses are different. To reach the depth of 1 nm, the force
applied on the indenter decreases when temperature increases. Figure 23 shows that the change of
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force is larger if the material stiffness is smaller. We conclude that temperature effects are more
significant on hardness of material with smaller stiffness.

8. CONCLUSIONS

It has been known that temperature has significant effects on material behaviours at the nanoscale.
Although multiscale methods can overcome the limitations of length/time scale associated with
molecular dynamics, they have difficulty investigating temperature-dependent physical phenom-
ena since most homogenization techniques have an assumption of zero temperature. The TCB
rule developed in this paper can solve the above issue. The TCB rule assumes that atoms have
locally harmonic motion and considers the free energy in which temperature effects are included.
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Therefore, the continuum-level stresses calculated from the free energy density instead of the strain
energy density are temperature dependent. Stress analyses of several crystalline solids verified the
TCB rule by comparing continuum-level Cauchy stresses with atomic-level Cauchy stresses from
molecular dynamics simulation. We also found that material stability of nanostructured materials
is temperature dependent. Stiffer materials can sustain larger deformation than softer materials at
the same temperature. In addition, we implemented the TCB rule into meshfree particle methods,
and the results from quasicontinuum meshfree particle simulations compared well with those from
molecular simulations. Furthermore, the crack propagation at the nanoscale can be simulated using
quasicontinuum meshfree particle methods with a cohesive crack model. It should be noted that
most examples studied in this paper contained fictitious molecular structures, such as the trian-
gular lattice or the simple cubic lattice. Those lattices were chosen mainly for verification of the
proposed homogenization technique and application of the developed quasicontinuum meshfree
particle method. Obviously, the framework described in this paper can be easily extended to study
practical problems of nanostructured materials, which is the direction of our future research.
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