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Abstract

In this study, we develop a temperature-related Cauchy–Born (TCB) rule for multiscale modeling of crystalline solids based on the
assumptions that deformation is locally homogeneous and atoms have the same local vibration mode. When employing the TCB rule in
the nanoscale continuum approximation, the first Piola–Kirchhoff stress can be explicitly computed as the first derivative of the Helm-
holtz free energy density to the deformation gradient. Since the Helmholtz free energy is temperature-dependent, multiscale methods
consisting of the TCB rule embedded continuum model can be used to elucidate temperature-related physical phenomena at the nano-
scale. Stress analyses of canonical ensembles verify the continuum approximation with the TCB rule by comparing the calculated Cauchy
stresses with the outcomes of molecular dynamics simulations. As an application of the TCB rule in multiscale modeling, the nanoscale
meshfree particle method with the TCB rule demonstrates the same crack propagation phenomenon in a nanoplate as molecular dynam-
ics. This example shows that the temperature effects are significant on the crack propagation speed when the temperature is in a partic-
ular range.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Although molecular systems with billions of atoms [1,2]
can be modeled using molecular dynamics (MD) with cur-
rent high-performance computing techniques, limitations
of MD are always found on both length and time scales.
These limitations prevent us from studying certain phe-
nomena such as material failure. With the development
of nanotechnology, multiscale methods have been of inter-
est as a potential alternative for MD since they are feasible
for simulating large nanoscale systems. Efficient multiscale
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methods are expected to cover a range of physical domains
of different length scales from atomic to microscopic/
mesoscopic to macroscopic scales.

One type of multiscale methods is hierarchical multiscale
modeling, such as the quasicontinuum method [3,4], in
which continuum methods are used to simulate a large
group of atoms. The continuum approximation is based
on the properties of a subscale model, such as an MD
model. With the other type, concurrent multiscale methods
use an appropriate model in different subdomains to treat
each length scale simultaneously. One of the pioneering
works was done by Abraham et al. [5], who developed a
methodology called macro-atomistic-ab initio-dynamics
(MAAD). Their method coupled a tight-binding quantum
mechanical calculation, molecular dynamics and a finite
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element method together for different subdomains. Some
concurrent methods, such as the bridging domain coupling
method [6,7], couple a molecular model and a continuum
model. Other multiscale methods can be found in
[8–10].

In multiscale modeling of crystalline and amorphous
solids, the intrinsic properties of the material are sought
at the atomic level and embedded in the continuum model
according to a homogenization procedure such as the
Cauchy–Born (CB) rule [11,12]. It is assumed that the
deformations are sufficiently small so that voids or disloca-
tions do not develop in the continuum domain. The con-
ventional CB rule states that the deformation is locally
homogeneous, and the atomic-level lattice thereafter
follows the deformation given by the macroscopically-
imposed deformation gradient. Consequently, an unde-
formed lattice vector A in the reference configuration (with
Lagrangian coordinates X) can be mapped into a deformed
lattice vector a in the current configuration (with Eulerian
coordinates x) by the deformation gradient F via a = FA

where F ¼ ox
oX

. For single-layer curved crystalline sheets,
the exponential CB rule [13,14] is available so that the
deformation gradient can map the tangent space of the
undeformed surface to the one of the deformed surface.
However, the conventional CB rule assumes that the simu-
lated systems are at zero temperature. Consequently, the
nanoscale continuum approximations with the conven-
tional CB rule have difficulties in demonstrating tempera-
ture-related physical phenomena at the nanoscale.

In this paper, we will propose a temperature-related
Cauchy–Born (TCB) rule which can be implemented in
most recently developed multiscale methods. This tech-
nique will be described in next section. Several examples
will be given in Section 3 to verify the nanoscale continuum
approximations embedded with the proposed TCB rule.
The problem of crack propagation in a nanoplate will be
studied using the nanoscale meshfree particle method with
the TCB rule in Section 4, followed by the conclusions and
discussion.
2. Temperature-related Cauchy–Born rule

Generally, in a nanoscale continuum model with the
finite element method, the potential energy depends on
the elongations and angle changes of the atomic bonds
underling the continuum meshes via the conventional CB
rule. Therefore, the total potential of the continuum model,
also called the strain energy, in the reference configuration
X0 is defined by

W C ¼
Z

X0

wCðFÞdX0 ð1Þ

where wC is the strain energy per unit volume. Then, the
first Piola–Kirchhoff stress, P, can be obtained from the
strain energy density via non-linear continuum mechanics
[15] by
P ¼ owCðFÞ
oF

ð2Þ

The above equation is usually used as a constitutive rela-
tion implemented into continuum models in multiscale
modeling of crystalline solids.

It has been shown that physical phenomena at the
nanoscale, especially nanostructured material failure, are
temperature-related. Therefore, it is important to consider
temperature effects in the continuum model when perform-
ing multiscale modeling and simulations. Temperature
effects can be introduced by employing potentials that incor-
porate the entropy due to lattice vibration, for example, in a
local Einstein description [16,17]. This is conceptually simi-
lar to the coarse graining of vibrations in first-principles
thermodynamics [18]. In this paper, we propose a tempera-
ture-related Cauchy–Born (TCB) rule for the continuum
model in multiscale methods. Similar to what were proposed
by Shenoy et al. [16] and Diestler et al. [19,20], we consider
the Helmholtz free energy, which was called the effective
energy in [16,19,20], instead of the potential energy. In their
previous research works, Shenoy et al. [16] incorporated a
free energy minimization technique into the quasicontinuum
method, while Diestler and his co-workers calculated isotro-
pic stresses using the pseudoatomic Hamiltonian. As a differ-
ence, we modify Eq. (2) to calculate the continuum-level
Piola–Kirchhoff stress for continuum approach to finite-
temperature nanosystems so that it can be easily imple-
mented into most multiscale methods.

In this paper, the vibration of an atom in a crystalline
solid is assumed to be harmonic. To simplify the harmonic
approximation, we neglect all terms that couple vibration
of different atoms. Then, the Helmholtz free energy, FH,
of a crystalline solid, which contains N atoms at a temper-
ature of T, is given by [21]

F H ¼ uðxÞ þ jBT
X

j

ln 2 sinh
�hxj

4pjBT

� �� �
ð3Þ

where u(x) is the potential energy of the atoms in their
equilibrium positions, x, at a temperature of 0 K; �h is
Planck�s constant; jB is the Boltzmann constant. The sum
over j includes all the non-zero vibrational modes of the
system. The frequencies, xj, are the eigenvalues of the
dynamical matrix

DIaJb ¼
1ffiffiffiffiffiffiffiffiffiffiffi

mImJ
p

o2u
oxIaoxJb

� �
ð4Þ

where xIa is the vibrational coordinate in direction a for
atom I, and mI is the mass of atom I. When taking a local
harmonic model [22], the principal frequencies of atom I

can be calculated by diagonalizing the local dynamical
matrix. Therefore, Eq. (3) can be simplified to

F H ¼ uðxÞ þ njBT
XN

I

ln
�hD

1=2n
I

2pjBT

 !" #
ð5Þ
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where n is the number of degrees of freedom per atom;
�DI ¼

Qn
j xIj

� �2

is the determinant of the local dynamical

matrix of atom I.
The TCB rule keeps the assumption of locally homoge-

neous deformation as in the conventional CB rule. In
addition, it is assumed that the atoms have the same local
vibration mode at a given temperature. Consequently, the
free energy, WH, of the crystalline solid with the continuum
model can be expressed as follows:

W HðF; T Þ ¼
Z

X0

wCðFÞdX0 þ njBT
XNq

i

nq
i

� ln
�hðDðFðXq

i ÞÞÞ
1=2n

2pjBT

" #
ð6Þ

where Nq is the number of quadrature points in the contin-
uum model in which one quadrature point, X q

i , represents
nq

i atoms. In the continuum model, the deformation gradi-
ent is evaluated at each quadrature point. It should be
noted that temperature does not need to be a global
constant. The temperature field can be discretized in the
continuum model and temperature can also be evaluated
at each quadrature point. The continuum-level strain
energy density in the first term on the RHS of the above
equation can still be calculated via the conventional CB
rule, which is compatible with the TCB rule. Then, the first
Piola–Kirchhoff stress can be obtained from the first deriv-
ative of the free energy density, wH, which is a function of
the temperature and the deformation gradient:

PðF; T Þ ¼ owHðF; T Þ
oF

ð7Þ

The above equation can serve as a temperature-related con-
stitutive relation for the nanoscale continuum modeling of
crystalline solids. In other words, the TCB rule can be used
to replace the conventional CB rule in multiscale methods
so that temperature effects can be considered in order to
study temperature-dependent physical phenomena of
nanostructured materials.
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Fig. 1. Comparison of Cauchy stresses of a molecular chain when the
deformation gradients are (a) F = 1.001, (b) F = 1.005 and (c) F = 1.01.
3. Verifications

To verify the developed TCB rule, we perform stress
analyses of a one-dimensional molecule chain and a two-
dimensional crystalline solid at any given deformation gra-
dients and temperatures. With the nanoscale continuum
approximation and the TCB rule, the first Piola–Kirchhoff
stress can be calculated via Eq. (7). Then, the continuum-
level Cauchy stress, rC, can be computed via rC = J�1F ÆPT

where J = det(F) is the determinant of deformation gradi-
ent F [15]. The calculated continuum-level Cauchy stresses
will be compared with the atomic-level Cauchy stresses
obtained from molecular dynamics simulations. In molecu-
lar dynamics simulations, the periodic boundary condition
and the Berendsen thermostat [23] are used, and the simu-
lated systems are canonical ensembles undergoing any
given deformations and temperatures. Then, the atomic-
level Cauchy stresses [24], rA, of the simulated molecular
system with the volume of X can be calculated via

rA ¼ 1

X

X
I

1

2

X
Jð6¼IÞ

rIJ � f IJ

 !
; f IJ ¼

ouðrIJ Þ
orIJ

rIJ

rIJ
ð8Þ

where rIJ(=rJ � rI) represents interatomic distance between
atoms J and I, and � denotes the tensor product of two
vectors. The sign convention adopted here for interatomic
forces, fIJ, is positive for attraction and negative for repul-
sion. Accordingly, a positive stress indicates tension and a
negative stress indicates compression. We should note here
that the Monte Carlo method could result in the same state
of stresses as molecular dynamic simulations for canonical
ensembles.

We first consider a one-dimensional molecule chain,
which contains 100 atoms, each of which has a mass of
1.993 · 10�26 kg. The following Lennard–Jones 6–12
potential function is employed to describe the interatomic
interaction between nearest neighbored atoms

uðlÞ ¼ 4e
1

4

l0

l

� �12

� 1

2

l0

l

� �6
" #

ð9Þ

where l0 = 1 nm is the undeformed bond length, and
e = 8.25 · 10�18 J is the depth of the energy well. When this
molecular chain is under a deformation gradient of F, the
length of the deformed bond is l = Fl0 since the deforma-
tion is assumed to be homogeneous. The dynamic matrix
for each atom can also be calculated, and they are the same
based on the assumption of the TCB rule. A simple
formula can be obtained to compute the continuum-level
Cauchy stress via Eqs. (6) and (7), and it is

rC ¼ P ¼ u0ðlÞ þ jBT
2

u000ðlÞ
u00ðlÞ ð10Þ

Fig. 1 shows the comparison of atomic-level and contin-
uum-level Cauchy stresses with temperatures when a given
deformation gradient is applied on the molecule chain.
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Fig. 3. Comparison of Cauchy stress components with temperature in the
two-dimensional Lennard–Jones crystal undergoing the following defor-
mation gradient: F11 = 1.001, F12 = 0.002, F21 = 0.0, F22 = 1.0.
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Molecular dynamics elucidates that the lower stress is ob-
tained at a higher temperature due to the thermal expan-
sion. However, since the continuum approximation with
the conventional CB rule does not include temperature
effects, its derived Cauchy stresses are independent of the
temperature and become a constant in Fig. 1. When the
TCB rule is employed, the Cauchy stresses are tempera-
ture-related and are in accord with molecular dynamics
results very well.

We then study a plate of two-dimensional Lennard–
Jones crystal with a triangular–hexagonal lattice as shown
in Fig. 2. This nanoplate contains 1116 atoms, and its
length and width are 30 nm. The interatomic Lennard–
Jones 6–12 potential and its parameters are the same as
in Eq. (9). When the nanoplate undergoes a deformation

gradient, F ¼ F 11 F 12

F 21 F 22

� �
, all the unit cells are assumed

to be deformed identically, and all the atoms have the same
harmonic vibration mode via the TCB rule. Therefore, the
strain energy density at the temperature of 0 K can be cal-
culated from the potential of the unit cell, as well as the
dynamic matrix of the atom located in the center of the
unit cell. Both of them can be expressed in terms of
the given deformation gradient and temperature. Then,
the continuum-level Cauchy stress of the nanoplate can
be computed.

Fig. 3 shows the comparison of each component of Cau-
chy stresses with temperature when a small deformation is
given. If temperature effects are considered, the continuum-
level normal stresses, calculated based on the TCB rule,
decrease with the increasing temperature. The results
match the molecular dynamics solutions very well. The
continuum approximation with the conventional CB rule
gives constant normal stresses without the consideration
of temperature effects. Since shear stresses are not influ-
enced by temperature, their magnitudes can be obtained
from continuum approximations with the conventional
CB or TCB rule and supported by molecular dynamics
simulations.
unit cell

Fig. 2. A two-dimensional Lennard–Jones crystal with a triangular–
hexagonal lattice.
4. Crack propagation in a nanoplate

As one application of the TCB rule in multiscale model-
ing of crystalline solids, we use the meshfree particle
method with the TCB rule to simulate crack propagation
in a nanoplate with the triangular–hexagonal lattice. As
shown in Fig. 4, the dimensions of this nanoplate are length
800 nm and width 280 nm, and the nanoplate contains
256,961 atoms with the mass of 1.0 · 10�22 kg. An edge
crack is initiated in the middle of the plate by taking out
a number of bonds, and the initial crack length is 20 nm.
For simplification, the crack is restricted to propagate
along the weak interface by assuming that only weakened
bonds can be broken. Buehler et al. [25] studied a similar
problem and pointed out that a local hyperelastic zone
weakened bond

weak interface

Fig. 4. A nanoplate with the triangular–hexagonal lattice containing an
initial edge crack.
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around the crack tip can influence the velocity of the crack.
They used biharmonic potential functions with various cut-
off distances. As a difference, we use a harmonic potential
function to describe interatomic interactions between
nearest neighboring atoms, except weakened bonds. The
harmonic potential function is

u1ðrÞ ¼
1

2
kðr � r0Þ2 ð11Þ

where the length of undeformed bond is r0 = 1 nm, and the
spring constant is k = 594.0 N/m. A Lennard–Jones poten-
tial with a cut-off distance of 2.0 nm, as described in Eq.
(9), is used for weakened bonds. It should be noted here
that the tangential stiffness of the weakened bond is equal
to the spring constant, k.

We already developed a hierarchical multiscale method
by implementing the conventional CB rule into the mesh-
free particle methods [26]. In this example, the nanoscale
meshfree particle method is employed with the implemen-
tation of the TCB rule. There are 13,600 particles in the
meshfree particle model. The nodal integration scheme is
used so that particles are quadrature points. The cohesive
model [27] is used in this paper for the weak interface,
and the cohesive traction, s, can be derived as

s ¼ obwHðd; T Þ
od

; d ¼ uþ � u� ð12Þ

where u+ and u� are displacements of upper and lower
facets of the weak interface, i.e., the cohesive zone, respec-
tively. bwHðd; T Þ is the free energy per length along the weak
interface and can be calculated similarly to Eq. (6).

In this example, the nanoplate is loaded in mode I via
prescribed displacements as shown in Fig. 4. The loaded
strain rate is 1 · 10�8 fs�1. We study the effects of temper-
ature on crack speed, and three different temperatures, 100,
300 and 1000 K, are considered. Fig. 5 shows the evolution
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Fig. 5. Comparison of crack propagation speed with different
temperatures.
of crack speeds when the nanoplate is at a given tempera-
ture. We can see that cracks start to propagate around
0.3 ns and crack speeds become constants within 0.1 ns.
The terminal constant crack speeds are 600, 1100 and
1350 m/s for 100, 300 and 1000 K, respectively. It can be
seen that high temperature results in high crack propaga-
tion speed. All the calculated crack speeds are lower than
the Rayleigh wave speed, although the speed can be 98%
of the Rayleigh wave speed when temperature is 1000 K.
When considering higher temperatures, such as 2000 K,
the crack speed does not increase significantly and is still
lower than the Rayleigh wave speed. In this example, our
simulations demonstrate that the temperature has signifi-
cant effects on the crack propagation speed when it is lower
than 1000 K. Otherwise, the temperature effects are not sig-
nificant. As a comparison, we also perform molecular
dynamics simulations, and the Berendsen thermostat is used
to maintain the nanoplate at a given temperature. Fig. 5
also shows that the same phenomenon can be observed
when performing molecular dynamics simulations.

5. Conclusions and discussion

We proposed a TCB rule which can be implemented in
nanoscale continuum approximations to study tempera-
ture-dependent physical phenomena of crystalline solids.
The examples showed that a continuum model with the
TCB rule can elucidate similar phenomena as molecular
dynamics for canonical ensembles. It should be noted here
that continuum approximations with the TCB rule are not
restricted to nanosystems with a globally constant temper-
ature, even though all the above examples have such
precondition. Since it is assumed that atoms have the same
harmonic vibration mode locally in the TCB rule, the free
energy can be evaluated at the discretized elements or
particles with a locally constant temperature if finite ele-
ment methods or meshfree particle methods are used,
respectively. In these general cases, the energy equation
has to be implemented in the continuum model to describe
heat transfer behaviour.

It has been known that length scale has significant effects
on dynamic fracture. Hierarchical multiscale methods with
continuum modeling of fracture may have difficulties in
elucidating physical phenomena of dynamic fracture at
the nanoscale. For example, the above example cannot
demonstrate the supersonic crack velocity which was
observed in some molecular dynamics simulations [25].
Therefore, concurrent multiscale methods are of interest
since they can provide an appropriate multiple-length-scale
model in which molecular dynamics is used to simulate
crack propagation while the rest is modeled by continuum
mechanics as the elastic media. However, the coupling of
the models may introduce some serious difficulties due to
large variance in length scales. The development of an effi-
cient failure model for hierarchical multiscale method will
stimulate our further research on multiscale modeling
and simulations.
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