
Wave Motion 40 (2004) 263–276

An FE-FCT method with implicit functions for the study
of shock wave propagation in solids

Shaoping Xiao∗
Department of Mechanical and Industrial Engineering and Center for Computer-Aided Design,

The University of Iowa, 3131 Seamans Center, Iowa City, IA 52242, USA

Received 2 February 2004; accepted 8 April 2004

Available online 28 May 2004

Abstract

A finite element flux-corrected transport (FE-FCT) method is proposed for the study of shock wave propagation in solids.
The FCT algorithm contains two stages: transport and antidiffusion. The total Lagrangian finite element method is used here
and the FCT algorithm is only applied to correct the nodal velocities along the lines of the structured mesh. An implicit
function is implemented into the finite element method so that the objective with arbitrary boundaries can be modeled with
structured mesh. Both one-dimensional and two-dimensional examples show that the FE-FCT method can efficiently eliminate
the oscillations behind the shock wave fronts.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The study of shock wave propagation in solids will improve our understanding of material response under
the situations of high pressures, high temperatures and very short times[1–3]. Numerical methods, especially
finite element (FE) methods[4], have become powerful tools to elucidate the complex mechanical and physical
phenomena. However, most of them have difficulties to simulate shock wave propagation problems since oscillations
are always observed behind the shock wave fronts. In this paper, a new method is proposed and it can be used to
accurately describe the shock wave propagation in solids.

One of the common techniques to reduce the oscillations behind the shock wave fronts is artificial bulk viscosity
[5]. It can efficiently eliminate the oscillations but the shock wave fronts are observed to be spread over several
elements or space step sizes if FE methods or finite difference (FD) methods are used, respectively. Moreover,
the total energy of the system somewhat dissipates due to the artificial bulk viscosity. It has been shown that the
flux-corrected transport (FCT) can perfectly solve the above issues. The FCT algorithm was first proposed by Boris
and Book[6,7] in 1970s. This algorithm consists of two stages: the transport stage and the antidiffusion stage.
The antidiffusion stage is a corrective stage which corrects numerical errors introduced in the transport stage. Both
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stages are conservative and positive. Their interaction enables the FCT algorithm to treat discontinuities without the
usual dispersively generated ripples (oscillations). It has been applied in different schemes of the FD methods[7],
and good results were obtained for the shock test problems[6] in fluids. Zalesak[8] described the FCT algorithm
in details and extended this algorithm to the multidimensional problems. In his multidimensional FCT technique,
a low order monotonic scheme and a high order scheme are needed. The FCT algorithm has been developed and
applied in some research areas[9–11]and it still has potential.

Since the FE methods have been well developed today and widely used to solve many complex physical and
mechanical problems. Some researchers try to implement the FCT algorithm into the FE methods[12–15]. Löhner
et al.[12] combined the FCT algorithm with the Eulerian FE methods and obtained good results for Navier–Stokes
equations. Then, they proposed a general Eulerian finite element flux-corrected transport (FEM-FCT) algorithm
on unstructured grids[13]. In their method, the high order solution is used in smooth regions of the problems
and the low order solution is used for the discontinuities such as shock wave fronts. Georghiou et al.[14] de-
veloped a similar two-dimensional FEM-FCT method which contains a low order positive ripple-free scheme
and a high order scheme. The above developments are mainly for the studies of shocks in fluids. Since the FE
methods based on the Lagrangian description are usually used in solid mechanics, the implementation of the
FCT algorithm into Lagrangian FE method, especially the total Lagrangian FE method[15], will result in a
powerful tool to study the shock wave propagation in solids. Zhang et al.[16] successfully coupled the FCT
algorithm and the Lagrangian finite element method together, and they obtained some interesting results in one
dimension.

A new finite element flux-correction transport (FE-FCT) method is proposed in this paper. The FCT algorithm
used here is from the fundamental version proposed by Boris et al.[6,7]. The discrete equations of motion in FE
methods can be viewed as the partial different equations (PDEs), which need to be corrected by the FCT algorithm.
Once structured meshes are generated, each component of the nodal velocities is corrected separately within each
time step. It is simpler than FD methods because the FCT algorithm needs to apply on each PDE. Moreover, the
proposed FE-FCT method does not require low order and high order scheme as the previous ones[13,14]. However,
the requirement for structured meshes will be an issue when an objective with arbitrary boundaries is considered. To
solve this issue, the method is linked to the extended finite element method[17,18]. An implicit function is introduced
to describe the boundaries of the objective. This enables the modeling to include features such as boundaries that are
not coincident with the mesh. Therefore, the proposed FE-FCT method can be easily applied to two-dimensional
solid problems and the stable, non-oscillatory results are observed. Such an FE-FCT method for three-dimensional
form is ready to go.

The outline of this paper is as follows. InSection 2, the general governing equation and the discrete equations are
given.Section 3describes the FCT algorithm first and gives a flow chart for the FE-FCT method. An implicit function
is introduced to describe the arbitrary boundaries. This implicit function is implemented into the proposed FE-FCT
method. Several examples including one-dimensional and two-dimensional problems are studied inSection 4,
followed by the conclusions.

2. Governing equation

Here, a problem domainΩ (current configuration) with a reference configurationΩ0 is considered. The motion
is described by

x = φ(X, t), (1)

wherex is the spatial (Eulerian) coordinate andX the material (Lagrangian) coordinate. The above map must be
one-by-one except on sets of measure zero (i.e., surfaces in three-dimensional), where points are split into two to
model cracking.

The momentum equations are
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∇0 · P + ρ0b = ρ0u or
∑
j

∂Pji

∂Xj
+ ρ0bi = ρ0üi, (2)

whereρ0 is the initial density,P the nominal stress tensor,b the body force,u the displacement, and superposed dots
denote material time derivatives. (2) is used in reference configuration. When the current configuration corresponds
to the reference configuration, i.e., whenΩ0 = Ω, the above form of the momentum equations can be written as
the spatial form of the momentum equations:

∇ · � + ρb = ρü or
∑
j

∂σji

∂xj
+ ρbi = ρüi, (3)

whereρ is the current density. By conservation of mass:

ρJ = ρ0, (4)

whereJ is the Jacobian determinant of deformation gradientF, which are defined by

J = det(F), Fij = ∂xi

∂Xj
. (5)

The two above forms of momentum equations are identical and differ in form only because they are expressed in a
different description; see[15]. Here, the total Lagrangian finite element method is used. Therefore, the approximation
for the displacements in Lagrangian mesh is

uh(X, t) = NT(X)u(t) or uhi (X, t) =
∑
J

NJ(X)uiJ(t), (6)

where the shape functionNJ(X) is a function of the material coordinates in total Lagrangian description. The above
approximation reproduces constant functions and linear functions exactly. Then, the approximation for the first
derivatives of the displacement can be written as

∇0uh(X, t) = BT(X)u(t) or
∂uhi (X, t)
∂Xj

=
∑
J

∂NJ(X)
∂Xj

uiJ(t). (7)

The discrete momentum equation can be obtained by the Galerkin weak form. In reference configuration, the weak
form of the linear momentum conservation equation is∫

Ω0

δuiρ0üi dΩ0 =
∫
Ω0

δuiρ0bi dΩ0 −
∫
Ω0

∑
j

∂(δui)

∂Xj
Pji dΩ0 +

∫
Γ t0

δuit̄i dΓ
t
0, (8)

whereδui is the test function, and̄ti the boundary traction. Substituting (6) and (7) into (8) and using a diagonal
mass matrix, the equations of motion can be obtained as

Mü = fext − f int or MIüiI = f ext
iI − f int

iI , (9)

whereMI is nodal mass for nodeI, andf ext
iI , f int

iI are the external and internal nodal force, respectively, given by

f ext
iI =

∫
Ω0

ρ0NI(X)bi dΩ0 +
∫
Γ t0

NI(X)t̄i dΓ t0, (10)

f int
iI =

∫
Ω0

∑
j

∂NI(X)
∂Xj

Pji dΩ0. (11)
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3. FE-FCT method

3.1. Flux-corrected transport algorithm

FCT algorithm was first used in the FD methods[6,7]. We first consider any functionU, which is a function of
time and space in one-dimensional. In FD method, the value of functionU at spatial stepj and time stepn+ 1 can
be written as

Un+1
j = f(Unj ,�t,�X), (12)

where�t is the time-step size and�X the spatial increment.
Based on what Boris and Book[6] proposed, the general FCT algorithm can be expressed as follows:

(a) Transport calculation: obtaining trial values of functionU at time stepn+ 1 from (12):

Ũn+1
j = f(Unj ,�t,�X). (13)

(b) Diffusive fluxes calculation:

ϕ0
j = η1(U

n
j+1 − Unj ), (14)

whereη1 is diffusive coefficient.
(c) Diffusion:

Ūn+1
j = Ũn+1

j + ϕ0
j − ϕ0

j−1. (15)

(d) Antidiffusive fluxes calculation:

ϕ1
j = η2(Ũ

n
j+1 − Ũnj ), (16)

whereη2 is antidiffusive coefficient.
(e) Limitation of antidiffusive fluxes

ϕCj = Smax{0,min[S ·∆j−1, |ϕ1
j |, S ·∆j+1]}, (17)

where∆j−1 = Ūn+1
j − Ūn+1

j−1 , andS = sign(ϕ1
j ).

(f) Antidiffusion:

Un+1
j = Ūn+1

j − ϕCj + ϕCj−1. (18)

In this paper, the diffusive coefficient and antidiffusive coefficient are constant, i.e.η1 = η2 = 0.125[6,7]. When
the above FCT algorithm is implemented into the FD methods, it can efficiently eliminate the oscillations behind
the shock wave fronts. Let us consider a square shape velocity wave propagating in an elastic rod. The governing
equations are

ρ
∂v

∂t
= ∂σ

∂x
, (19)

∂ε

∂t
= ∂v

∂x
. (20)

Leapfrog time integration algorithm is used in this problem. Within each time step, we first obtain velocityv from
(19) and apply the FCT algorithm to correct it. Then, we obtain strainε from (20) and correct it once more by using
the same FCT algorithm.Fig. 1(a) shows that the oscillations occur behind the shock wave fronts when the FD
method is used without any filtering processing. However, if FCT algorithms are applied, we can obtain very good
discontinuous shapes for shock wave fronts when they propagate along the media as shown inFig. 1(b).
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(b) FD method with FCT

Fig. 1. Square shape velocity wave propagating along one-dimensional elastic rod.

3.2. A general FE-FCT method

The FD methods usually need to solve several PDEs especially in multi-dimensional problems so that the FCT
algorithm needs to be applied on each PDE. The FE methods are almost well developed today and it has been widely
used to solve a variety of mechanical or physical problems. Therefore, the implementation of the FCT algorithm in
the FE methods will have more potential than in the FD methods.

In the FE methods, the equations of motion (9) can be written as the following differential equations:

∂viI

∂t
= f ext

iI − f int
iI

MI

, (21)

where v is the velocity. Since each component of the velocity is independent in (21), the FCT algorithm can be
applied on each component of the velocity separately if structured meshes are provided as shown in Fig. 2.

In short, the flow chart for the FE-FCT method can be written as follows:

(a) Initial conditions and initialization: set initial values of material state variables.
(b) Calculate the nodal force as (10) and (11).
(c) Obtain the trial velocities: ṽn+1

iI = vniI + ((f ext
iI − f int

iI )/MI)�t.
(d) Calculate the diffusive fluxes: ϕ0

iI = η1(v
n
iI+1 − vniI).

(e) Diffusion: v̄n+1
iI = ṽn+1

iI + ϕ0
iI − ϕ0

iI−1.

v

element

node

(a) 1D with 2-node elements

vy

vx

(b) 2D with quadrilateral elements

Fig. 2. Structured meshes for FE methods.
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φ(X)<0 Γ

φ(X)=0

φ(X)>0

Ω0

Fig. 3. Objective described by an implicit function under a structured mesh.

(f) Calculate antidiffusive fluxes: ϕ1
iI = η2(ṽ

n
iI+1 − ṽniI).

(g) Apply limitation of antidiffusive fluxes:

ϕCiI = Smax{0,min[S ·∆iI−1, |ϕ1
iI|, S ·∆iI+1]},

where ∆iI−1 = v̄n+1
iI − v̄n+1

iI−1, and S = sign(ϕ1
iI).

(h) Antidiffusion: vn+1
iI = v̄n+1

iI − ϕCiI + ϕCiI−1.
(i) Update displacements and apply the boundary conditions.
(j) Output: if simulation does not complete, go to (b).

3.3. The implementation of an implicit function

Obviously, the issue of this FE-FCT method is that the regular meshes or structured meshes are required. The
FE methods with structured meshes have difficulties to solve the problems with arbitrary surfaces. We introduce an
implicit function here to describe the arbitrary boundaries in the FE methods. Such an idea was first proposed by
Belytschko et al. [17,18]. Under a structured mesh in the reference configuration as shown in Fig. 3, the objective
with body Ω0 with boundary Γ can be described by an implicit function φ(X) so that

φ(X)




= 0, on Γ,

> 0, insideΩ0,

< 0, outsideΩ0.

(22)

The implicit function can be initially chosen to be a signed distance function or defined by radial basis functions
from a set of points. Therefore, the weak form (8) can be rewritten as∫

Ω0

δuiH(φ)ρ0üi dΩ0 =
∫
Ω0

δuiH(φ)ρ0bi dΩ0 −
∫
Ω0

H(φ)
∑
j

∂(δui)

∂Xj
Pji dΩ0 +

∫
Γ t
δuit̄i dΓ t, (23)

where

H(φ) = H(φ(X)) =
{

0, φ < 0,

1, φ > 0.
(24)

Then, the nodal forces can be rewritten as

f ext
iI =

∫
Ω0

ρ0H(φ)NI(X)bi dΩ0 +
∫
Γ t
NI(X)t̄i dΓ t, (25)
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φ(X)=0

Fig. 4. The element containing boundary is divided into several subelements.

f int
iI =

∫
Ω0

H(φ)
∑
j

∂NI(X)
∂Xj

Pji dΩ0. (26)

For the element crossed by the boundary, the integration procedure is more involved, since only part of the element
contributes to Ω0. For instance, in two-dimensional problems, a simple way [17] is cutting each element as shown
in Fig. 4 into several subelements by the boundary. Then, the quadrature over the element consists of the quadrature
over those subelements. The integration on the traction boundary involves quadrature over the zero isobar of the FE
approximation of the implicit function (see [17]).

4. Examples

4.1. Elastic shock wave propagation in one-dimensional rod

We first consider the shock wave propagation in one-dimensional elastic rod to show the efficiency of the proposed
FE-FCT method. The length of the rod is 20 m. The material parameters are Young’s modulus E = 10 000.0 N/m2

and density ρ0 = 100 kg/m3. Two thousand two-node elements are generated for this problem. Fig. 5 shows that
a loading is applied on the left end of the rod with time. We can observe that two shock waves propagate (one is
loading wave and the other is unloading wave) from left to right and then are reflected by the free end of the rod.
Since the loading stretches the rod, the tensile stress waves are observed first and they become compressive stress
waves after reflection.

Fig. 6(a) shows the stress wave configurations at three different times: t1 = 0.5, t2 = 1.75 and t3 = 3.25 s.
Without any filtering procedure, the oscillations are observed behind the shock wave fronts. If the FE-FCT method
is used, the oscillations are totally eliminated as shown in Fig. 6(b).

As discussed in the Section 1, one of the other common techniques to eliminate such oscillations is to use the
artificial viscosity. Here, a damping term is added into the equations of motion:

Mu + Du = fext − f int, (27)

where D is a damping matrix.

f -6000N

t

0.75s

Fig. 5. Loading applied on the end of one-dimensional elastic rod.
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(b) FE-FCT method simulation

Fig. 6. Stress waves propagation along an elastic rod.

When the damping system is used, we can see that the oscillations can be eliminated as shown in Fig. 7. However,
we also observe that the shock wave fronts are smeared over several elements. That is the side effect when damping
is added in the system. On the other hand, the damping will dissipate some of the energy of the whole system. Fig. 8
shows the evolutions of total energy, which consists of strain energy and kinetic energy, by using the FE method, the
FE-FCT method and the FE method with damping, respectively. We can see that total energy from the FE method
with damping is getting smaller and smaller than the ones from the FE method and the FE-FCT method since the
artificial viscosity dissipates the total energy.

4.2. Elastoplastic shock wave propagation in one-dimensional rod

We study the same problem as in example given in Section 4.1 except the elastoplastic rod is considered here.
The stress–strain relationship can be illuminated in Fig. 9, where the stress threshold is σ0 = 3000 N/m2. Therefore,
when the same loading (Fig. 5) is applied, three shock waves, two elastic stress waves and one plastic wave, can be
observed first as in Fig. 10.
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Fig. 7. Stress wave propagation simulated by FE method with damping.
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Fig. 8. The comparison for the evolution of the total energy.
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Fig. 9. Stress–strain relationship for a one-dimensional elastoplastic rod.

X(m)

S
tr

es
s

(N
/m

2 )

0 5 10 15 20
-4000

0

4000

8000

t2

t1

t3

(a) FE method

X(m)

S
tr

es
s

(N
/m

2
)

0 5 10 15 20
-4000

0

4000

8000

t2

t1

t3

(b) FE-FCT method

Fig. 10. Stress wave propagation in a one-dimensional elastoplastic rod.
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Fig. 11. Two-dimensional plate under compression.

Fig. 10 shows the stress wave configurations at three different times: t1 = 0.9, t2 = 1.8 and t3 = 3.75 s. Since
the pressure applied on the end of the rod is larger than the stress threshold, an elastic shock wave followed by a
plastic shock wave will be generated once the pressure is applied. Both of them are loading stress waves. Once the
loading is completed, an unloading elastic wave is observed. Because elastic wave speed is larger than the plastic
wave speed, the unloading elastic wave will catch the loading plastic shock wave and interact with it. Then, two new
elastic waves (one is strong discontinuity and the other is weak discontinuity) will be generated and they propagate
on the opposed directions, respectively.

4.3. Plane wave propagation

A plate with length of L = 4.0 m and width of D = 1.0 m is considered under a compressive loading along
one side of it, as shown in Fig. 11. The material properties are: the Young’s modulus E = 10 000.0 N/m2, the
Poisson’s ratio v = 0.3 and the density ρ0 = 100 kg/m3. Here, the unit thickness is assumed and plane strain is
considered. Quadrilateral elements are used here and 100×100 elements are generated for the plate. In the FE-FCT
method, once the velocities of the nodes are obtained within each time step, two components of the velocities will
be corrected along the lines of the mesh respectively. Fig. 12 shows the distributions of the velocity along the y
direction at time t1 = 0.04 and t2 = 0.08 s, respectively. We can see that FE-FCT method can totally eliminate the
oscillation behind the shock wave front. Fig. 13 compares the contour of stress σyy from FE method and FE-FCT
method. We can see that the FE-FCT method gives perfect result.

Y (m)

V
el

oc
ity

(m
/s

)

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

4

FE method
FE-FCT method

(a) t1 = 0.04s

Y (m)

V
el

oc
ity

(m
/s

)

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

4

FE method
FE-FCT method

(b) t2 = 0.08s

Fig. 12. Distribution of velocity vy .
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Fig. 13. The comparison of the contour of stress σyy.

4.4. Cylindrical wave propagation

A plate with a hole whose radius is r = 0.25 m is considered to study the cylindrical wave propagation. Only
one-quarter of the plate, in which both length and width are L = 5.0 m, is modeled as shown in Fig. 14. Since the
structured mesh (quadrilateral) is generated for this problem, the implicit function is used to describe the boundary
along the hole. The elements, which are crossed by the boundary, are cut into several subelements for integration
as shown in Fig. 15. The material properties are the same as in example given in Section 4.3. Initial velocity
v = 1000.0 m/s is applied along the boundary of the hole as shown in Fig. 14 and it lasts 0.1 s.

r

L

L

v

eθ

er

Fig. 14. One-quarter of the plate with a hole.
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Fig. 15. Structured mesh for the plate with a hole.
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Fig. 16. Distribution of the velocity vr .

Fig. 17. Contour of the velocity vr at t2 = 0.3 s.
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Fig. 18. Contour of the velocity vr at t = 0.6 s.

Fig. 16 shows the distributions of radial component of the velocities vr at time t1 = 0.1 and t2 = 0.3 s. We can see
that with structured mesh, the FE-FCT method can almost eliminate the oscillations behind the shock wave fronts
when cylindrical waves propagate. Fig. 17 gives the same results when the contour of the velocity vr is plotted.
Fig. 18 shows the contour of the velocity vr at time t = 0.6 s after the shock waves were reflected by the free
boundaries. We can see that the waves interact with each other and the FE-FCT method can give a good description.

5. Conclusions

When studying the shock wave propagation in solids, the artificial viscosity is usually applied to eliminate the
oscillations behind the shock wave fronts. However, it smears the shock wave fronts and somewhat dissipates the
energy of the system. The Flux-corrected transport algorithm has been applied into the finite difference methods
and given stable, non-oscillatory results for shock dynamics problems in fluids. The total Lagrangian finite element
method has become a power tool in solid mechanics. The combination of the total Lagrangian finite element method
and the flux-corrected transport algorithm will result in a good numerical tool for shock wave propagation problems
in solids.

A new finite element flux-corrected transport (FE-FCT) method is developed in this paper. Based on the Lagrangian
description, the finite element method with implicit function is proposed so that structured mesh can be generated for
the multi-dimensional problems with arbitrary boundaries. Such an idea was first provided as the structured extended
finite element method [17,18]. Based on the flux-corrected transport algorithm proposed by Boris and Book [6,7],
a simple generalized FCT algorithm is implemented into the finite element method. With the structured meshes,
the components of the velocities can be independently corrected along the lines of the mesh. One-dimensional and
two-dimensional examples show that the proposed FE-FCT method can efficiently eliminate the oscillations behind
the shock wave fronts. The method has the potential to simulate the shock wave propagation in an objective with
arbitrary boundaries and its three-dimensional form is ready to go.
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