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SUMMARY

This paper reviews several novel and older methods for coupling mesh-free particle methods, particularly
the element-free Galerkin (EFG) method and the smooth particle hydrodynamics (SPH), with �nite
elements (FEs). We study master–slave couplings where particles are �xed across the FE boundary,
coupling via interface shape functions such that consistency conditions are satis�ed, bridging domain
coupling, compatibility coupling with Lagrange multipliers and hybrid coupling methods where forces
from the particles are applied via their shape functions on the FE nodes and vice versa. The hybrid
coupling methods are well suited for large deformations and adaptivity and the coupling procedure is
independent of the particle distance and nodal arrangement. We will study the methods for several static
and dynamic applications, compare the results to analytical and experimental data and show advantages
and drawbacks of the methods. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mesh-free methods became a good alternative to FEM and FDM in certain areas. For problems
involving large deformation, fracture and fragmentation, mesh-free methods seem to be more
�exible than �nite elements (FEs), because they do not rely on a �xed topological connectivity
between nodes. Mesh-free methods have advantages in problems involving crack growth as
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no remeshing is necessary. Particles can be added without the need to remesh, so adaptive
re�nement of the discretization can be done easily.
Considerable research in mesh-free methods has been devoted on inherent di�culties like

consistency, stability and Dirichlet boundary conditions. While these issues are not yet com-
pletely resolved, viable methods are available. In addition, up to now, the computational e�ort
for mesh-free methods is higher than for FEs. Hence, as long as no robust and, at the same
time, e�cient formulation for mesh-free particle methods is available, it seems bene�cial to
discretize only certain parts of the domain with particles and the rest with FEs. Within this
article, we will review some selected coupling approaches in detail. A good overview about
inter alia coupling methods can be found in the book of Li and Liu [1].
One of the �rst coupling procedures for mesh-free particle methods and FEs was proposed

by Attaway et al. [2]. They developed a master–slave coupling for �uid–structure interactions;
the �uid was discretized with particles, the structure was modelled with FEs. Their algo-
rithm is based on a common master–slave coupling (see Reference [3]); in every time step they
checked whether particles penetrate element faces. The calculated forces that prevent the inter-
penetration are always normal to the corresponding element surface. Sliding between particles
and elements in tangential direction is allowed. A similar approach was proposed by Johnson
[4] and Johnson et al. [5]. In addition, they developed transition elements where particles are
�xed to FE nodes. This allows for a rigid coupling in the sense that tensile and shear forces
are transferred through the interface. We will propose here a new approach where the particles
are rigidly �xed to the FE nodes via a master–slave coupling as described in Reference [3].
Liu et al. [6, 7] showed how to couple the reproducing kernel particle method (RKPM)

with �nite element method (FEM) by modifying the shape functions in the transition area
for both RKPM and FEM. They applied the reproducing condition also in the transition area.
Belytschko et al. [8] developed a coupling algorithm for element-free Galerkin (EFG) and
FEM by a mixed interpolation in the transition domain, where FE nodes are substituted by
particles and connected via ramp functions to the EFG nodes so that continuity and consistency
are preserved on the interface elements. In Reference [9] they extended this method also for a
nodal integration of EFG. The drawback of this method is that the derivatives are discontinuous
along the interface.
Huerta et al. [10, 11] developed a mixed hierarchical approximation based on �nite element

and mesh-free methods. They enriched both FE and EFG method and were able to remove the
discontinuities in the derivative across the interior boundaries that was the major drawback
of the method in Reference [8].
Hegen [12] coupled FEM and EFG with Lagrange multipliers for elasto-static problems.

In his approach, the substitution of FE nodes by particles is not necessary. Rabczuk and
Belytschko [13] extended this idea to non-linear problems and applied it to deformable inter-
faces. Karutz [14] showed convergence of a similar approach to model crack-propagation
problems using an adaptively generated EFG domain. A coupling with Lagrange multipliers
where FEs and particles overlap was invented by Belytschko and Xiao [15]. They called
this method the ‘bridging domain coupling method’ and successfully applied it to atomic and
multiscale simulations. Another bridging domain coupling was before proposed by Wagner
and Liu [16] to couple atomic and continuum simulations, see also Reference [17] for a more
comprehensive overview. While the bridging domain coupling in Reference [15] su�ered from
spurious wave re�ections in certain cases, Kadowaki and Liu [18, 19] introduced some wave
re�ection algorithms to remove this drawback.
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Sauer [20] proposed an smooth particle hydrodynamics–�nite element (SPH–FE) coupling
by extending the SPH domain onto the FE mesh. Di�erent possibilities for exchanging forces
between FE nodes and particles were shown, and the approach was used for adaptive con-
version of elements into particles. The main di�erence with most above-mentioned methods
is that they used a strong-form coupling.
Recently, the group around Liu and Li [21–23] developed a hybrid method called repro-

ducing kernel element method (RKEM), which exploits advantages of both, mesh-free and
FE methods, e.g. the RKEM shape functions ful�l the Kronecker delta property. A similar
method (moving particle FEM) was developed almost simultaneously by Hao et al. [24].
While most hybrid FE–mesh-free methods are at least �rst-order in convergence, Liu et al.
[21] showed that their RKEM method maintains the usual convergence rate. Another method
to maintain the usual convergence rate by hierarchical enrichment was proposed by Wagner
and Liu [25] and Han et al. [26]. Other good overviews about mesh-free and particle methods,
their coupling to FEs with impressive examples can be found in Li and Liu [1, 27–37].
This article is arranged as follows. We will brie�y review the EFG- and SPH-method

and FE shape function. Then we will describe the coupling approaches tested in our article,
i.e. master–slave couplings, coupling via mixed interpolation, coupling via Lagrange mul-
tipliers, bridging domain coupling and hybrid couplings. We will compare these methods
for two examples where an analytical solution is available: in statics, the cantilever beam
and in dynamics, a rod with initial boundary conditions. The last example was studied by
Rabczuk et al. [38] for di�erent mesh-free methods. We will further apply the methods to
several static and dynamic problems where experimental data are available and discuss some
advantages and drawbacks of the di�erent methods.

2. BASIC EQUATIONS

The basic equations of continuum mechanics in a total Lagrangian description are the con-
servation of mass

%J = %0 J0 (1)

the conservation of linear momentum

�u=
1
%0

∇ ·P+ b (2)

and the conservation of angular momentum

F ·P=PT ·FT (3)

where J and J0 is the Jacobian and initial Jacobian, u is the displacement vector, %0 is the
initial density, P are the nominal stresses, b are the body forces and F denotes the deformation
gradient. The superimposed dot indicates the material time derivatives and the superscript ‘T’
denotes the transpose of a tensor or a vector.
The boundary conditions are

u(X; t) = �u(X; t) on �u0 (4)

n0 ·P(X; t) = �t(X; t) on �t0 (5)
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where �u and �t are the prescribed displacement and traction, respectively, n0 is the outward
normal to the domain in the initial con�guration and �u0 ∪�t0 =�0, �u0 ∩�t0 = 0.

3. SHAPE FUNCTIONS

In any of the approximation methods we consider the approximation of the trial functions by

u(X; t)=
N∑
I=1
NI (X)uI (t) (6)

where NI (X) is a shape function and uI is a parameter associated with node XI . For inter-
polants, such as FE shape functions u(XI ; t)= uI (t). The test functions are approximated by

�u(X)=
N∑
I=1
NI (X)�uI (7)

We have chosen the same shape functions for the approximation of the test and trial functions.

3.1. FE shape functions

Within this paper, we restrict ourselves to two-dimensional problems. The standard bilinear
shape functions for two-dimensional four-node FEs are

NI (^)=1=4(1 + �I�)(1 + �I�) (8)

where X(^) is a mapping from the parent domain of problem to the physical domain and �I
and �I are the nodal co-ordinates in the parent domain �∈ [−1; 1]; �∈ [−1; 1], given by

X=
N∑
I=1
XINI (9)

3.2. Mesh-free shape functions

In the literature there exists a large amount of mesh-free particle methods. As already men-
tioned, we consider the EFG- and SPH-method [39–43] although the coupling ideas presented
in this paper are, in general, applicable to most mesh-free methods. A Lagrangian kernel is
chosen, i.e. the shape functions are evaluated in the reference con�guration only.

3.2.1. SPH shape functions. In standard SPH, the shape function is a product of particle
volume and a weighting function:

N (X)=�VIW (X −XI ; h0) (10)

where �VI is the volume associated with the neighbour particle and W (X − XI ; h0) is
a weighting function.
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3.2.2. EFG shape functions. The EFG shape functions are given by

N (X)= p(X) ·A(X)−1 · pjW (X −XI ; h0) (11)

with

A(X)=
N∑
I=1
pjpTj W (X −XI ; h0) (12)

where p(X) are basis functions which are chosen to p(X)= (1 X Y Z) to ful�l linear com-
pleteness (see Reference [9]). When the base functions are chosen to p(X)= (1), they are
known as Shepard functions and denoted by w in the following.

4. QUADRATURE FOR FINITE ELEMENT AND PARTICLE METHODS

For the FEM method, the integrals are customarily evaluated by Gauss quadrature:

∫
	0
u(X) d	0 =

∫ +1

−1

∫ +1

−1
u(^) 1

8
det J(^) d^=

NGP∑
J=1
wPup(^)

1
8
det Jp(^) (13)

where ^ indicates the co-ordinates of the local element co-ordinate system, J is the Jacobian
determinant and wp are the weighting coe�cients which depend on the number of Gauss
points in the cell. The Jacobian matrix J= @x=@^ follows from (9)

J=
NGP∑
J=1

@NJ (^)
@^ xJ (14)

The bilinear shape functions mentioned in Equation (8) can be integrated exactly using a
2× 2 quadrature. In this work, however, we use the common reduced integration scheme with
only one integration point in the element centre which is computationally cheaper.
For the particle methods we use an integration by stress points, see, e.g. Reference [44].

Stress point integration removes the instability due to rank de�ciency, which is obtained in
a pure nodal integration but retains the mesh-free character of the method.

5. COUPLING PROCEDURES OF MESH-FREE PARTICLE METHODS AND FEM

5.1. Master–slave coupling approaches

5.1.1. Coupling by �xing particles to the FE nodes. Johnson et al. [4] �xed the particles to
the FE nodes by a simple procedure. In their method, the forces on the FE nodes FK and
the particles FP as well as their masses and the calculation of the common accelerations are
combined. The forces which act on the nodes and particles are given by

FK =mKaK ; FP=mPaP (15)
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and are determined by the (already) calculated accelerations. The common acceleration of the
node and corresponding particle is

aK;coupling = aP;coupling =
FK + FP
mK +mP

(16)

One major drawback is that every particle needs a corresponding node and vice versa, so that
the coupling is not valid for an arbitrary particle arrangement.

5.1.2. Master–slave coupling. We consider here another possibility to �x the particles rigidly
to the elements so that an arbitrary nodal arrangement is possible. We follow a master–slave
procedure as explained in Reference [3]. In this coupling method, the particles adjacent to the
FEM model are rigidly connected to the FEM interface (see Figure 1). Therefore, the particles
are considered as slave nodes while the FEM nodes are the master nodes. As proposed in
Reference [3] the slave nodes are updated after master nodes have been updated in an explicit
method.
In the initialization, the co-ordinates of the closest point projection of the initial position of

each particle P on the FE=mesh-free interface has to be obtained as illustrated in Figure 2. For
convenience, a generic surface with element co-ordinates (�c; �C) on the surface is considered,
assumed that �= ±1. In the �rst step, the element co-ordinates of the projection of particle P
onto the element surface, denoted by C, must be found (see Figure 2), it corresponds to the
closest point projection of P onto C. The location of this point at any time can be found by

x=
N∑
J=1
NI (�C; �C;±1)xI (17)

The velocities of the point C are given at any time by

v=
N∑
J=1
NI (�C; �C;±1)vI (18)

interface

Figure 1. Two-dimensional illustration of particle/FEM interaction, grey particles are slave.
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C
P

1

2

3

4

Figure 2. Projection of particle centre P onto interface to �nite elements.

To obtain the velocities of the particles the master–slave algorithm (see Reference [3]) is
applied. Since P is a slave node, its velocities at any time can be expressed in terms of the
velocities of the nodes I of the FE (I =1; : : : ; 4). The relationship will be done in two steps.
First, vSP is expressed in terms of v

S
C , then v

S
C in terms of the master nodes v

M
I where the

superscripts S and M denote slave and master nodes, respectively. Since PC is a line in a
rigid body, the velocity of the slave particle are given by

vSP= v
S
C + �(xP − xC); �P=�C (19)

when � denotes the angular velocity of the line PC. The above can be written in matrix
form as: [

vSP
�SP

]
=

[
I �PC

0 I

] [
vC
�C

]
(20)

We de�ne

T1 =

[
I �PC

0 I

]
(21)

where

�PC =

⎡
⎢⎣

0 zPC yPC
−zPC 0 xPC
−yPC −xPC 0

⎤
⎥⎦ (22)

The velocity of point C can be expressed in terms of the shape functions of the surface nodes:

vC =
N∑
J=1
NI (�; �; 1)vMI ; �C =

N∑
J=1
AIvMI (23)

where A will be de�ned later, see Equations (29) and (30).
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Combining these, we have [
vC
�C

]
=

[
NI I
AI

]
[vMI ] (24)

where

T2 =

[
NI I

AI

]
(25)

Considering the particle velocities at point P and C we obtain[
vSP

�SP

]
=

N∑
J=1
T1T2vMI (26)

where

TI =T1

[
NI (�C; �C;±1)
AI (�C; �C;±1)

]
(27)

From work conjugacy, it follows that any nodal forces on particle P should be transformed
and added to node I , so

fMI =
∑
J∈S
TTJ

[
fSP

mSP

]
∀J ∈ S (28)

where J are the supporting nodes in the domain S. The angular velocity can be calculated by
dividing the quadrilateral surface into two triangles as shown in Figure 3. Then, the normal

1

2

3

4

1

2

Figure 3. Computation of the angular velocity in terms of the normal.
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FE node

particle

particle domain
PΩ

element domain
ΩFE

particle boundary
ΓP

element boundary
ΓFE

blending region ΩB

Figure 4. Coupling of �nite elements and particles via ramp functions.

n of the triangle 123 is given by

n=
x12 ×x31

‖x12 ×x31‖ (29)

so that the angular velocity is

�= ṅ (30)

with

ṅ=(nt+�t − nt)=�t (31)

5.2. Compatibility coupling (coupling via ramp functions)

Consider a domain of problem with a hybrid discretization between FEs and particles as
illustrated in Figure 4. The superscripts FE and P indicate the domain for the FEs and particles,
respectively. The transition region is designated by 	B, 	P denotes the particle domain and
	FE is the element domain. The element and particle boundary is �FE and �P, respectively.
The weak form of the momentum equation is the standard principle of virtual work: �nd
u∈V such that

�W = �Wint − �Wext + �Wkin = 0 ∀�u∈V0 (32)
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where

V= {u(·; t)|u(·; t)∈H1; u(·; t)= �u(t) on �u0}

V0 = {�u|�u∈V; �u=0 on �u}
(33)

�Wint =
∫
	0
(∇0 ⊗ �u)T : P d	0 (34)

�Wext =
∫
	0
%0b · �u d	0 +

∫
�t0

�t0 · �u d�0 (35)

�Wkin =
∫
	0
%0�u · �u d	0 (36)

where the pre�x � denotes the test function and Wext is the external energy, Wint the internal
energy and Wkin the kinetic energy. The approximation of the trial functions is given in
Section 3. The test functions have a similar structure. In the interface region, an approximation
is given by

uh= uFE(X) + R(X)(uP(X)− uFE(X)); X∈	B (37)

where uFE and uP are the FE and particle approximations for u in the transition region and
R(X) is a ramp function, so that R(X)=1;X∈�P and R(X)=0;X∈�FE. It is constructed with
the use of a linear ramp function along the interface element boundaries so that continuity
is ensured:

R(X)=3r2(X)− 2r3(X) (38)

with

r(X)=
∑
J∈S�P

NJ (X) (39)

where S�P is the set of nodes on �P. Substituting the FE approximations and the mesh-free
approximation into Equation (39) the approximation in the transition region is obtained:

uh(X)=
∑
J
Ñ I (X)uI ; XI ∈	B (40)

with the interface shape function

Ñ I (X) = (1− R(X))NI (^(X)) + R(X)NI (X) X∈	B (41)

Ñ I (X) = R(X)NI (X) X =∈	B (42)

In Reference [8] it is proven that linear completeness is preserved in the whole domain. If
the integrals for the particles are evaluated by a nodal integration with stress points, the shape
functions in the blending domain have only to be evaluated at the particle boundary �P and
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Γ0
αΩ0

FE

Ω0
P

Ω0
int

α=1α=0

finite element node

particle

Figure 5. Finite element model coupled with particle method.

element boundary �FE and are reduced to:

Ñ I (X) =NI (X) X∈	B on �FE (43)

Ñ I (X) = 0 X =∈	B on �FE (44)

Ñ I (X) =N (X) X =∈	B on �P (45)

since R(X)=1 on �P and R(X)=0 on �FE. The approximation of the test functions in the
blending region has the same structure. They are inserted in the weak form of the linear
momentum equation.

5.3. Bridging domain coupling method

5.3.1. coupling model. We denote the complete domain in the initial con�guration by 	0 and
its boundaries by �0; �0 consists of traction boundaries �t0 and the displacement boundaries
�u0. The domains are subdivided into the subdomains treated by FEMs, 	

FE
0 , and that treated

by particle methods, 	P0; the latter is the domain encompassed by the particles of the model.
The intersection of these two domains is denoted by 	int0 in the initial con�guration, 	int in
the current con�guration; 	int is often called the overlapping subdomain (or bridging domain),
see Reference [15]; ��0 denotes the edge of the FE domain; an example of a model is shown
in Figure 5.
In expressing the total internal potential energy of the system we employ a scaling parameter

� in the overlapping subdomain. The parameter � is de�ned as �= l(X)=l0 where l(X) is the
least square of projection of X onto ��0 as shown in Figure 5. The scaling parameter � is
unity at the edge of the FE domain and vanishes at the other edge of 	int0 ; it is important
that 	int0 includes the last line of particles.
In the absence of heat transmission the conservation of energy of governing equations in

the entire domain is

W int =
∫
	FE0

�FEFT ·P d	FE0 +
∫
	P0

�PFT ·P d	P0 (46)
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where the scaling multiplier �eld � is de�ned as

�FE(X) =

⎧⎪⎪⎨
⎪⎪⎩
0 in 	P0

1− � in 	int0

1 in 	FE0 −	int0
(47)

�P(X) =

⎧⎪⎪⎨
⎪⎪⎩
0 in 	FE0

� in 	int0

1 in 	P0 −	int0
(48)

The external energy is

W ext =
∫
	FE0

�FE�0b · u d	FE0 +
∫
	P0

�P�0b · u d	P0 +
∫
�FE0

�FEt · u d�FE0 +
∫
�P0

�Pt · u d�P0 (49)

In 	int0 the displacements can be approximated in the terms of shape functions NI (X) of
FEM or kernel functions wI (X) of particle methods, respectively, by

uFE(X; t)=
∑
I
NI (X)uFEI (t) (50)

uP(X; t)=
∑
I
wI (X)uPI (t) (51)

Therefore, the constraints condition in 	int0 at the discrete position of particles is

gI = {giI}= {uFEiI − uPiI}=
{∑

J
NJIuFEiJ − ∑

K
wKIuPiK

}
(52)

The Lagrange multiplier �eld is also expressed in terms of shape functions denoted
by 
I (X):

�i(X; t)=
∑
I

I (X)[iI (t) (53)

Generally, the shape functions for the Lagrange multiplier �eld 
I (X) will di�er from
that for the displacement, NI (X) or wI (X), and they must satisfy the LBB conditions. The
Lagrange multiplier �eld is usually represented by inserting FEs in the intersection domain and
the FE approximation is applied on the particles of the overlapping subdomain. To distinguish
the Lagrange multiplier �eld �i in Equation (53), �iI is denoted as the unknown Lagrange
multiplier at the Lagrange multiplier nodes.

5.3.2. Discrete equations. The energy function for augmented Lagrangian method is

WAL =W int −W ext + [Tg+ 1
2pg

Tg (54)

where p is the penalty parameter. If p=0, Equation (54) will be identical to the expression
of energy function for Lagrange multiplier method.
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The discrete equations are then obtained by setting the derivatives of WAL with respect to
uI and �I to zero. This gives

@WAL

@uFEiI
= (F intiI − FextiI ) +

∑
L

[(∑
K

KL�K

)
NIL

]

+p
∑
L

[(∑
K
NKLuFEiK − ∑

K
wKLuPiK

)
NIL

]
=0 (55)

@WAL

@uPiI
= (fintiI − fextiI )− ∑

L

[(∑
K

KL�K

)
wIL

]

−p∑
L

[(∑
K
NKLuFEiK − ∑

K
wKLuPiK

)
wIL

]
=0 (56)

@WAL

@�iI
=

∑
L

IL

[∑
K
NKLuFEiK − ∑

K
wKLuPiK

]
=0 (57)

where

NKI =NK(XI); 
KI =
K(XI) (58)

Fint and Fext are internal and external force in FE subdomain 	FE0 and they are
expressed as

FintiI =
∫
	FE0

�FENI; j(X)Pji(X) d	FE0 (59)

FextiI =
∫
	FE0

�FE�0bi d	FE0 +
∫
�t0

�FE �ti d�t0 (60)

and f int and f ext are internal and external force in particle subdomain 	P0 and they are
expressed as

f intiI =
∫
	P0

�PwI; j(X)Pji(X) d	P0 (61)

f extiI =
∫
	P0

�P�0bi d	P0 +
∫
�t0

�P �ti d�t0 (62)

Letting d denote the array of u, the increments in the internal nodal force can be approxi-
mated in terms of increments in the nodal displacement by sti�ness matrices:

�FintI =
∑
J
KFEIJ �u

FE
J or �Fint =KFE�dFE (63)

�f intI =
∑
J
KPIJ�u

P
J or �f int =KP�dP (64)
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where KFE and KP are tangent sti�ness matrices given by

KFE =

⎡
⎢⎢⎢⎢⎢⎣

KFE11 KFE12

KFE21 KFE22
: : :

KFEnn

⎤
⎥⎥⎥⎥⎥⎦ ; KFEIJ =

@FintI
@uFEJ

(65)

KP =

⎡
⎢⎢⎢⎢⎢⎣

KP11 KP12

KP21 KP22
: : :

KPmm

⎤
⎥⎥⎥⎥⎥⎦ ; KPIJ =

@f intI
@uPJ

(66)

dFE =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dFE1

dFE2
· · ·
dFEn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
; dFEI =

{
uFExI

uFEyI

}
; dP =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dP1

dP2
· · ·
dPm

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
; dPI =

{
uPxI

uPyI

}
(67)

The system can then be written as⎡
⎢⎢⎣
A11 A12 LFE

T

A21 A22 LP
T

LFE LP 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
�dFE

�dP

��

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−rFE

−rP

−g

⎫⎪⎪⎬
⎪⎪⎭ (68)

If we let di denote ukP and dj denote ulQ, the ingredients of Equation (68) can be
expressed as

rFE = Fint − Fext + [TGFE + pgTGFE (69)

rP = f int − f ext + [TGP + pgTGP (70)

g= {giI} =
{∑
K

IKgiK

}
(71)

A11 =KFE + pGFETGFE (72)

A12 =pGFE
T
GP (73)

A21 =pGP
T
GFE (74)

A22 =KP + pGP
T
GP (75)

�iI =
∑
K

K(XI)�iK (76)
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KFE =
[
@Fint

@dFE

]
=

[
@F intiI
@uFElQ

]
=

[∫
	FE0

�FENI; jCjilkNQ; k d	FE0

]
(77)

KP =
[
@f int

@dP

]
=

[
@fintiI
@uPlQ

]
=

[∫
	P0

�PwI; jCjilkwQ; k d	P0

]
(78)

LFE =
[∑
L

IL

@gL
@dFEi

]
=

[∑
L

IL

@gjL
@dFEi

]
=

[∑
L

IL

@gL
@uFEkP

]
=

[∑
L

ILNPI�jk

]
(79)

LP =
[∑
L

IL
@gL
@dPi

]
=

[∑
L

IL
@gjL
@dPi

]
=

[∑
L

IL

@gL
@uPkP

]
=

[
−∑

L

ILwPI�jk

]
(80)

GFE =
[
@gI
@dFEi

]
=

[
@gjI
@uFEkP

]
=[NPI�jk]

GP =
[
@gI
@dPi

]
=

[
@gjI
@uPkP

]
=[−wPI�jk]

(81)

5.3.3. Explicit time integration. In dynamics, the Lagrangian of the system is

L=W kin −W int +W ext (82)

where W kin =
∑

I mI
1
2 ḋ

2
I is kinetic energy.

Therefore, the Lagrangian for the coupling model is

L=LFE + LP =�FEW kin
FE − �FEW int

FE + �
FEW ext

FE + �
PW kin

P − �PW int
P + �PW ext

P (83)

The Lagrangian for augmented Lagrangian method is

LAL =L+ [Tg+ 1
2 pg

Tg (84)

In Lagrangian mechanics the equations of motion are written as

d
dt

(
@L
@ḋ

)
=
@L
@d

(85)

Then, we obtain the equations of motion by substituting Equation (84) into Equation (85):

M �uFE + Fint − Fext − FC =0 (86)

m �uP + f int − f ext − fC =0 (87)

where

MIJ =
∫
	FE0

�FE�0NI (X )NJ (X ) d	FE0 (88)

mIJ =
∫
	P0

�P�0wI (X )wJ (X ) d	P0 (89)

Copyright ? 2006 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:1031–1065



1046 T. RABCZUK, S. P. XIAO AND M. SAUER

the internal and external forces are de�ne as before. FC and fC are extra forces from the
constraints

FC = [T @g
@uFE

+ pgT
@g
@uFE

= [TGFE + pgTGFE (90)

fC = [T @g
@uP

+ pgT
@g
@uP

= [TGP + pgTGP (91)

Equations (87) and (86) can be written in a general form:

M �d= f ext − f int + fC (92)

In time step n+ 1, we �rst obtain the trial velocities by

v= v(n) +M−1�t
(
f ext − f int + pgTG)

(93)

The trial velocities need to be corrected by applying the constraint equations, which are
written in time derivative form

ġI = v
FE
I − vPI =

∑
J
NJIvFEJ − ∑

J
wJIvPJ =0 (94)

where the velocities are the values at time step n+ 1 and given by

v(n+1) = v(n) +M−1�t
(
f ext − f int + [TG+ pgTG)

= v+M−1�t[TG (95)

Substituting Equation (95) into Equation (94), the Lagrange multiplier can be obtained by
solving the following equations:(∑

J

�t
MJ
wJIGPLJ − ∑

K

�t
MK

NKIGFELK

)
[L =

(∑
J
NJIvFEJ − ∑

K
wKIvPK

)
(96)

[L =
{
�xL
�yL

}
vFEJ =

{
vFExJ
vFEyJ

}
vPK =

{
vPxK
vPyK

}
(97)

The Lagrange multipliers, which are set on the positions of discrete atoms, are treated as
unknown variables in the dynamic algorithm. The algorithm is given in Table I.

Table I. Explicit algorithm for dynamics with coupling method.

1. initial conditions and initialization: t=0 and compute M;
2. get f int , f ext and fC which is from Equation (92);
3. compute trial velocities from Equation (93);
4. compute the unknown of Lagrange multipliers �� from Equation (96);
5. update velocities from Equation (95);
6. apply boundary conditions;
7. output; if simulation does not complete, go to 2
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Figure 6. Coupling of particle and �nite elements.

5.4. Compatibility coupling: coupling with Lagrange multipliers

A coupling approach where no ramp functions are needed was �rst proposed by Hegen [12].
Rabczuk and Belytschko [13] used this approach to couple EFG nodes and FEs to model the
bond behaviour in reinforced concrete beams in statics. In this method, relative displacements
between the particles and the elements are allowed. Xiao [45] developed an explicit method
based on Lagrange multipliers (similar to the approach of Hegen [12]) which is a simpli�ed
version of the bridging domain coupling. He called this method edge-to-edge coupling. The
main di�erence is that the FE and particle domain do not overlap, which simpli�es the method
enormously. However, for wave propagation problems, the bridging domain coupling is more
accurate. We will review the coupling via Lagrange multipliers as in Reference [13] and
extend it to dynamics.
For the static case, the potential to be minimized is

W =W int −W ext + [Tg (98)

where W int is the internal and W ext is the external energy. The last term on the RHS are
the constraints. In the dynamic case, an inertia term is added. The Lagrange multipliers are
denoted by [ and g= uFE − uP is the gap of the particle and the FE domain along the
common boundary as illustrated in Figure 6. The Lagrange multipliers are located at the
particle positions and are

gh=
N∑
J=1
N FEJ (X; t)u

FE
J − ∑

J∈S
N PJ (X; t)u

P
J (99)

The Lagrange multiplier estimates are placed at the particle position and FE shape functions
are used to discretize the Lagrange multiplier �eld �[:

�[Ph(X; t)=
N∑
J=1
N FEJ (X; t)��J (t) (100)

Note that for the interpolation in Equation (100), the position of the Lagrange multipliers in
the local element co-ordinate system has to be known. The test and trial functions are

�uh(X; t) =
N∑
J=1
N FEJ (X; t)�u

FE
J (t) +

∑
J∈S

N PJ (X; t)�u
P
J (t) (101)

uh(X; t) =
N∑
J=1
N FEJ (X; t)u

FE
J (t) +

∑
J∈S

N PJ (X; t)u
P
J (t) (102)
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and

N FE(X; t) = 0 ∀X ∈ 	P0
N P(X; t) = 0 ∀X ∈ 	FE0 (103)

where S is the set of nodes in the particle model.
Minimizing Equation (98) with respect to u and [ leads to the following equations:

@W
@u

=
@W int

@u
− @W ext

@u
+ [@g

@u
= f int − f ext + [@g

@u
=0

@W
@[ = g = 0

(104)

The derivatives of W int and W ext with respect to u are the internal and external forces,
respectively:

f int =
∫
	P0∪	FE0

(∇0 ⊗ �u)T : P d	0 (105)

f ext =
∫
	P0∪	FE0

�u · b d	0 +
∫
�P; t0 ∪�FE; t0

�u · �t0 d�0 (106)

The additional forces [(@g=@u) are linear combinations of the Lagrange multipliers. To obtain
the discrete system of non-linear equations we will do a linearization as described, e.g. in
Reference [3]. Therefore, we take a Taylor series expansion of Equation (104) neglecting any
higher-order terms:

f int − f ext + [@g
@u
+
@f int

@u
�u − @f ext

@u
�u+

@g
@u
�[+ [ @

2g
@u@u

�u=0

u+
@g
@u
�u=0

(107)

Substituting the test and trial functions, Equations (100)–(102) into (107) we �nally obtain
the following system of equations:⎡

⎢⎢⎢⎢⎣
KFE + [ @

2g
@u@u

0 (KFE−FE)T

0 KP + [ @
2g

@u@u
(KFE−P)T

KFE−FE (KFE−P)T 0

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎣
�uFEJ

�uPJ
��

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
f ext;FE − f int;FE − [TKFE−FE

f ext;P − f int;P − [TKFE−P

−g

⎤
⎥⎥⎦ (108)

where KFE−FE and KFE−P denotes the derivatives of g with respect to u for the FE (uFE)
and particle domain (uP), respectively, and KFE and KP are the derivatives of the internal
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and external forces with respect to u. Since neither b nor the traction boundary conditions �t
depend on u, the derivatives on f ext exist only for the cohesive model. Finally, we can give
the matrices:

KFE−FE =
∫
�∗
0

(NFE)T ·NFE d�0

KFE−P =−
∫
�∗
0

(NFE)T ·NP d�0

KP =
∫
	P0

(BP)TCBP d	0

KFE =
∫
	FE0

(BFE)TCBFE d	0

(109)

and the vectors for internal and external forces

f ext;FE =
∫
	FE0

(NFE)Tb d	0 +
∫
�FE; t0

(NFE)T�t0 d�0

f ext;P =
∫
	P0

(NP)Tb d	0 +
∫
�P; t0

(NP)T�t0 d�0

f int;FE =
∫
	FE0

(BFE)T · P d	0

f int;P =
∫
	P0

(BP)T · P d	0

(110)

For dynamics, let us de�ne the problem for every domain separately: Find ui ∈H 1(	i),
i=FE or P and [∈H 0(�∗) so that

∫
	FE0

%FE0 �u
FE · �uFE d	0 +

∫
	FE0

∇�uFE : PFE d	0 −
∫
	FE0

�uFE · bFE d	0

−
∫
�1t0

�uFE · �tFE d�−
∫
�∗
�[ · uFE d�−

∫
�∗
�uFE · [ d�=0 (111)

∫
	p0

%P0�u
P · �uP d	0 +

∫
	P0

∇�uP : PP d	0 −
∫
	P0

�uP · bP d	0

−
∫
�Pt0

�uP · �tP d� +
∫
�∗
�[ · uP d� +

∫
�∗
�uP · [ d�=0 (112)

for all �ui ∈H 1(	i); i=FE or P and �[∈H 0(�∗) where the superscript i indicates the corres-
ponding domain (	FE and 	P), respectively. Note that for the dynamic scheme, the displace-
ments ui ; i=FE or P in the �fth term on the LHS of Equations (111) and (112) are replaced
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by their accelerations �ui ; i=FE or P to obtain the discrete equations. The test and trial
functions in a Bubnov–Galerkin method are approximated via the same shape function

�uih(X; t) =
N∑
J=1
NiJ (X; t)�u

i
J (t) (113)

uih(X; t) =
N∑
J=1
NiJ (X; t)u

i
J (t) (114)

where the superscript i indicates the corresponding domain (	FE and 	P). The Lagrange
multipliers are approximated to

[ih =
N∑
J=1

J[iJ (115)

�[ih =
N∑
J=1

J �[iJ (116)

where for the 
 the FE shape functions are chosen. Finally, we obtain with the traction and
displacement continuity the equation of motion∑

J=1
mIJ �uJ = f extI − f intI (117)

with

m=

⎡
⎢⎣
mFE 0 −GFE
0 mP GP

−GFE GP 0

⎤
⎥⎦ (118)

u=

⎡
⎢⎣
uFE

uP

[

⎤
⎥⎦ (119)

F=

⎡
⎢⎣
f int;1 − f ext;1
f int;2 − f ext;2

−g

⎤
⎥⎦ (120)

and

miIJ =
∑
I

∫
	i0

%i0N
i
I N

i
J d	

i
0; i=FE or P (121)

GiIJ =
∫
�u0

NiI�J d�
i
0 (122)

f int; iI =
∫
	i0

∇NiI · Pi d	i0; i=FE or P (123)

f ext; iI =
∫
�i0

%i0N
i
I b
i + NiI �t

i d�i0; i=FE or P (124)
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Figure 7. Hybrid FE–particle coupling.

where the superscript i designates either the particle or FE domain. Note that we used here a
consistent mass matrix. When the mass is lumped, a scheme as explained in detail in Table I
can be used.

5.5. Hybrid approximation

The principle of the hybrid (FE–mesh-free method) coupling is explained in Figure 7. For
the particle approximation, the FE domain is included in the sums of the mesh-free
approximation:

uhI (X) =
∑
J
uJN (XJ −XI ; h0) +

∫
	FE∩P

uFEN (XFE −XI ; h0) d	0 (125)

∇uhI (X) =
∑
J
uJ∇N (XJ −XI ; h0) +

∫
	FE∩P

uFE∇N (XFE −XI ; h0) d	0 (126)

where the �rst term on the RHS of Equations (125) and (126) is the usual discrete mesh-free
approximation and the second term is the enhancement in the hybrid domain 	FE∩ P. Applying
this procedure to the typical SPH-form of the momentum equation, we obtain

�uI (X) =− 1
%0

∑
J
(P(XJ ) + P(XI)) · ∇N (XJ −XI ; h0)

− 1
%0

∫
	FE∩P

(P(XFE) + P(XI)) · ∇N (XJ −XI ; h0) d	0 (127)
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The incremental deformation gradient ∇u(XI) is computed by the same technique:
∇u(XI) =−∑

J
(u(XJ )− u(XI))⊗ ∇N (XJ −XI ; h0)

−
∫
	FE∩P

(u(XFE)− u(XI))⊗ ∇N (XFE −XI ; h0) d	0 (128)

Especially, the possibility to compute the deformation gradient is the large advantage of the
hybrid coupling versus other strong-form couplings developed by Johnson [4] and Attaway
et al. [2]. Since the particle sums remain symmetric, it is guaranteed that the deformation
gradient is computed correctly. Another advantage is that the approximation is independent of
the relation between the particle distance and the FE length. Since no transition elements are
needed for this coupling, adaptivity can be incorporated quite easily as proposed by Sauer [20].
The approach shown above can be easily extended to improved SPH approximation schemes,

as normalized SPH [20] or stress point integration versions of the EFG method. For the FEs,
the integrals in the hybrid domain 	FE∩P can be evaluated by Gauss quadrature. However,
as shown by Sauer [20], using (in local co-ordinates) equally spaced integration points in
approximately the same density as the SPH particles gave the most accurate results for most
examples tested. For a two-dimensional quadrilateral element, a function in the discrete form
can be computed as∫

	FE∩P
u(x; y)N (x; y) d	0 =

∑
J

m∑
i=1

n∑
j=1
wiwju(�i; �j)N (xi; yi)|J(�i; �j)| (129)

and its spatial derivative as∫
	FE∩P

u(x; y)∇N (x; y) d	0 =
∑
J

m∑
i=1

n∑
j=1
wiwju(�i; �j)∇N (xi; yi)|J(�i; �j)| (130)

Figure 8. Force transmission on the element nodes in the hybrid domain.
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Figure 9. Edge-to-edge coupling using the visibility criterion.

Figure 10. Force transmission via interpolation.

where wi and wj are the weights in the corresponding direction �i and �j, respectively, �i and
�j are local co-ordinates, m is the number of integration points in �-direction, n the number
of integration points in �-direction and J designates the Jacobian matrix.
Crucial is how to apply the forces on the element nodes in the hybrid domain. Sauer [20]

proposed two di�erent techniques. One possibility is to impose the forces from the particle
domain on the element–particle boundary as shown in Figure 8. The stresses for boundary
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particle k2 (see Figure 8) are then

Pk2 =
∑

J P(XJ )N (XJ −XI ; h0)∑
J N (XJ −XI ; h0) (131)

The traction on the adjacent element sides according to Figure 8 can then be expressed as

tk1k2 = nk1k2 · Pk2 (132)

tk2k3 = nk2k3 · Pk2 (133)

and the internal forces for node 2:

F2 =
l12
2
tk1k2 +

l23
2
tk2k3 (134)

where l12 denotes the length of the side from node k1 to node k2 and l23 denotes the length
of the side from node k2 to node k3. Care has to be taken at edges as shown in Figure 9.
Therefore, a visibility criterion is incorporated, so that only particles contribute to the sums,
which can be seen by the corresponding element boundary node. In the following, this coupling
will be denoted as HA–S coupling.
Another possibility to apply the forces from the particles to the FEs, is shown in Figure 10.

The advantage of this methods is its robustness since it is not sensitive with respect to changes
in the element topology, and therefore easy to use in three dimensions. The internal force can
be calculated as

F=− wGP det JGP(P(XFEGP) + P(XI)) · N (XFE −XI ; h0) (135)

In the following, this coupling approach will be denoted as HA–F coupling. We used the
central di�erence time integration.

6. NUMERICAL EXAMPLES

6.1. Static examples

6.1.1. Timoshenko beam problem. We will test the di�erent methods for a cantilever beam
of length L and height D with a traction of P at the free end as shown in Figure 11. The

y

x

P

L

D

Γu

Figure 11. Timoshenko elastic beam.
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model is considered to be of unit thickness and in a state of plane stress. The exact solution
of this problem has been given by Timoshenko and Goodier [46]:

ux =− P
6EI

[
(6L− 3x)x + (2 + �)

(
y2 − D2

4

)]

uy =
P
6EI

[
3�y2(L− x) + (4 + 5�)Dx

2

4
+ (3L− x)x2

]

where the moment of inertia I =D3=12 and the other parameters used here are

E=3× 107; �=0:3; D=12; L=48; P=1000

Figure 12. Bridging domain coupling: �nite element and particle arrangement.
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Hybrid approximation
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Figure 13. Error in the displacement norm for the di�erent coupling
methods for the static Timoshenko beam.
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The L2 error displacement norm is checked in this example

L2 =
‖uh − uanalytic‖

‖uanalytic‖ (136)

The coupling domain for the Bridging domain coupling in the initial con�guration is shown
in Figure 12. For the other approaches the particle and the FE-domain do not overlap.
The di�erent coupling methods in Section 5 are studied. Figure 13 shows the error in the

displacement norm versus the element length. The best results are obtained from the bridging
domain coupling, the edge-to-edge coupling and the compatibility coupling. The di�erences are
marginal. The coupling via ramp functions give similar results in the convergence rate though
the absolute error is higher. The worst results are obtained by the master–slave coupling and
the hybrid coupling method.
As can be seen from Figure 13 (see also Table II), the convergence rate is decreasing

with increasing re�nement. Table II lists the values of the convergence rate for the di�erent
re�nement steps.

6.1.2. Crack-propagation problem. The next example is a crack-propagation problem in con-
crete. Therefore, a notched beam is loaded as shown in Figure 14. The beam fails due to

Table II. Convergence rates.

h1–h2 h2–h3 h3–h4
(3–1.5) (1.5–1.0) (1.0–0.75)

Bridging domain coupling 1.66 1.365 1.06
Edge-to-edge coupling 1.657 1.354 1.02
Coupling via ramp function 1.455 1.267 1.03
Compatibility coupling 1.72 1.23 1.1
Master–slave coupling 1.23 1.23 1.13
Hybrid coupling 1.23 1.23 1.13

F0.13 F

1.13 F

6161 mm 651mm 793mm 793

306

82 mm

BA

Figure 14. Test set-up of the notched concrete beam of Arrea and Ingra�ea [47].
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Figure 15. Discretization of the notched concrete beam of Arrea and Ingra�ea [47].

Figure 16. Discretization of the notched concrete beam of Arrea and Ingra�ea [47].

a mixed mode failure. Experimental data are available, see Reference [47]. Since particles
have advantages over FEs in crack problems, the area around the notch, where we expect
the crack to propagate, is discretized with particles while the rest is discretized with a much
coarser FE mesh. We have also run computations with a pure mesh-free discretization. The
advantage of the hybrid scheme is the lower computational cost.
The results in the crack path are pretty similar for all tested methods. We will show results

for the coupling with Lagrange multipliers, the coupling with ramp functions and the master–
slave coupling. A typical discretization in the initial con�guration is shown in Figure 15.
Figure 16 shows the discretization close to the transition between FEs and particles for the
case when particles are located directly on FE nodes. We will compare the crack paths and
the load–displacement (right of the notch) curves to the experimental data.
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Figure 17. Crack paths for the hybrid coupling: (a) rigid coupling; (b) compatibility
coupling; (c) coupling via ramp functions; and (d) pure mesh-free discretization.
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Figure 18. Load–displacement curve of the di�erent computations compared to the experimental data.

We have chosen a combined continuum–discontinuum approach to describe the concrete,
see Reference [48]. The concrete is modelled with linear elastic material behaviour in com-
pression and with the Lemaitre model [49] in tension. In the discontinuous region, a lin-
ear traction-crack opening relation is applied. Details of this model can be found in
Reference [48].
For all hybrid discretization, we will show results for approximately 3500 particles in the

region where the crack is expected. The adjacent region is modelled with 2700 elements.
Finer meshes gave similar results.
For the pure EFG approximation, the total number of particles is approximately 13 400.

The crack paths for the di�erent coupled methods and the pure EFG discretization are shown
in Figure 17. The results look very similar but the pure mesh-free discretization is computa-
tionally more expensive. A slightly curved crack can be observed which matches well with
the experimental results.
The load–displacement (right of the notch) curves are shown in Figure 18. All curves are

lying within the experimental scatter and show marginal di�erences.

6.2. Dynamic examples

6.2.1. The rod with initial boundary velocity condition. To investigate the coupling
methods for dynamic problems, we consider a linear elastic rod. The rod is discretized in
two dimensions (plane strain). It is 60mm long and its height is 5mm. An initial velocity of
v=e(−�(x−30)

2), �=0:025 is prescribed. The sound speed is c=
√
E=% with E=210 000MPa

and %=0:0078 g=mm3, so the wave returns to its original position at t=0:011563ms. This
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Table III. L2 error in the velocities for an initial condition (Gauss distribution
of the velocities) for di�erent methods before and after the wave re�ection.

Error at Error at CPU time
0.0116ms 0.0231ms (min)

Master–slave coupling 0.0289 0.0465 5.3
Hybrid coupling 0.0141 0.0152 5.5
Coupling via ramp functions 0.0179 0.0323 5.5
Compatibility coupling 0.016 0.03201 5.6
Bridging domain coupling 0.0107 0.0111 5.8
EFG 0.007842 0.007901 9.1

example was studied in Reference [38] for pure particle methods. Xiao [45] showed in one
dimension that the bridging domain coupling is superior to other coupling methods in wave
re�ection problems since spurious wave re�ections are removed.
We study di�erent ratios between particles and FE nodes, from 1:1 up to 8:1. We also

study the in�uence of the re�nement. Half of the rod is discretized mesh-free while the other
part is discretized with FEs as it was done in Section 6.1.1 for the Timoshenko beam. The
Young’s modulus E is set to 210 000 and the Poisson’s ratio is �=0:0. The L2 error in the
velocities is given before and after the wave re�ection:

‖err‖L2 =
‖vh − vanalytic‖

‖vanalytic‖ (137)

Additional to the coupling methods, we will give also the results for a pure mesh-free
discretization, i.e. EFG with stress point integration. In Table III, the results are presented for
approximately 20 000 nodes+particles and a ratio of 4:1. The error in the velocity is given
for the di�erent methods at two times. At t=0:011563ms, the wave �rst reaches its original
position, at t=0:023126ms it reaches its original position for the second time.
As can be seen, the best results are obtained by the pure mesh-free discretization. Of course,

there is no noise caused due to any coupling. The smallest error is obtained with the bridging
domain coupling followed by the hybrid coupling method. The largest error occurs for the rigid
coupling. Except for the pure mesh-free discretization and the bridging domain coupling, it
can seen that the error increases in time. This increase in error is probably caused by spurious
wave re�ections. Table III also gives the computation times for the di�erent methods. As can
be seen, the mesh-free method gives the most accurate results but the computation time is
approximately 2 times longer. It should be mentioned that half of the rod is discretized with
particles, so that a dramatic speed up is expected if a smaller fraction of the structure is
discretized with particles.
If the ratio between particles and FE nodes is decreased, the error over time in the ve-

locity norm increases in the hybrid method up to a factor of 2 for the tested example and
a ratio of 1:1. However, for larger ratios, the hybrid method gives more accurate results
than all the other methods tested (except for the bridging domain coupling). The bridg-
ing domain coupling also gives a nearly constant error at the two di�erent times for lower
ratios.
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concrete slab: 610 mm * 610 mm

25.4 mm

v = 300 ... 1060 m/s
m = 0.53 kg
steel projectile 

compressive strength = 48 MPa

Figure 19. Experimental set-up of the impact experiments preformed by Hanchak et al. [50].

6.2.2. Impact of a concrete slab. Hanchak et al. [50] performed di�erent impact experiments
of reinforced concrete slabs. In their experiments, the concrete had a compressive strength
of 48 and 140MPa, respectively. They used a 0.53 kg steel projectile which was shot onto a
0.178m thick 0:61m× 0:61m concrete slab, see Figure 19. Besides the initial velocity of the
steel projectile, they also measured its discharge velocity. The in�uence of the reinforcement
(5.7mm diameter, e=76mm) in respect to the perforation resistance is negligible according to
Hanchak et al. [50]. Interesting is the observation, that the concrete with a strength of 140MPa
was able to increase the perforation resistance only slightly in respect to the concrete with a
compressive strength of 48MPa. The experimental set-up is shown in Figure 19.
The particle and FE discretization are exemplarily shown for the ramp function coupling,

Figure 20. The region where we expect large deformations and a high damage is discretized
with particles, the rest is discretized with FEs. We made use of the symmetry and discretized
only half of the projectile and the slab. At a discretization of 2520 particles and 836 elements
for the concrete, we obtained mesh-independent results which are presented here. The projectile
is modelled with a pure FE mesh using 70 elements.
The reinforcement is modelled via an elastoplastic material law with a strain-based failure.

Simpli�ed, a rigid bond between concrete and the reinforcement is assumed. For the concrete
a constitutive model as described in Reference [51] was used. The initial elasticity modulus
for concrete accounts for 36 000MPa and the compressive strength for 48MPa. All other
material parameters can be found in Reference [51].
As mentioned above, additional to the experimental data, we compare our results to a pure

mesh-free (EFG) discretization.
Figure 21 shows the deformed concrete plate at di�erent time steps for the two-dimensional

simulation using the ramp function coupling method. Table IV compares the ejection velocity
of the Hanchak experiments with di�erent coupling methods and pure mesh-free discretization.
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Figure 20. Hybrid discretization of the concrete slab.

Figure 21. Deformed con�guration of the Hanchak slab using the ramp function
coupling: (a) at 0.1ms; and (b) at 0.18ms.

The coupling methods approximate the measured ejection velocity quite well for high impact
velocities. For low impact velocities, larger discrepancies between the hybrid and pure mesh-
free approximation can be observed. We cannot explain why there are larger discrepancies for
higher impact velocities but we attribute these discrepancies to wave e�ects at the boundaries.
The computation time for the pure mesh-free discretization is approximately 8 times higher
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Table IV. Ejection velocities for di�erent impact velocities.

Plate Ramp function Compatibility Hybrid Master–slave Pure EFG
(impact Experiment coupling coupling coupling coupling discretization
velocity, m=s) (m=s) (m=s) (m=s) (m=s) (m=s) (m=s)

H1 (360) 67 12 22 69 26 76
H2 (430) 214 175 184 207 183 216
H3 (750) 615 604 611 616 611 620
H4 (1060) 947 947 949 948 948 950

than for the coupling methods. The discrepancies in computational costs are marginal between
the di�erent methods.

7. SUMMARY AND DISCUSSION

We gave an overview about di�erent particle-�nite element coupling techniques; master–slave
couplings, coupling via ramp functions, compatibility coupling, bridging domain coupling and
hybrid coupling.
Major theme is to use coupled methods due to computational e�ciency. Local domains

where cracks or large deformations are expected should be discretized with particles while
other domains should be discretized with �nite elements.
For the cantilever beam problem, we observe, that the master–slave and the hybrid coupling

gave the worst results. All other methods showed similar accuracy. All coupling methods gave
similar results for the static Arrea–Ingra�ea beam problem.
For the rod with initial boundary condition, only the bridging domain coupling and the

hybrid coupling method gave a nearly constant error with time. In all other methods, the
error increased with time that indicates spurious wave re�ection. One drawback of the hy-
brid method is that the error over time in the velocity norm increases with decreasing ra-
tio of particles to nodes at the interface. However, the hybrid method has the advantage
that adaptivity can be incorporated quite easily compared to all other methods and is for
large-scale problems such as impacts probably most e�cient. At the start, �nite elements
are used which can be transformed into �nite elements. However, one can question if these
methods are more accurate than remeshing algorithms since data have to be mapped as in
remeshing �nite element algorithms. Sauer [20] studied these issues and investigations are still
underway.
The best choice for a coupling methods is de�nitely problem dependent. From the imple-

mentational point of view, the master–slave coupling is probably the easiest and the bridging
domain coupling is by far the most challenging one to code. For linear elasto-statics, we have
observed that the hybrid method and the master–slave coupling gave the worst results. How-
ever, when applying these methods to non-linear problems with local cracking, all coupling
methods performed similarly well.
For wave propagation problems, only the bridging domain coupling and the hybrid coupling

gave su�cient results. In all other methods, the error increased in time. Also comparisons with
experimental data and pure mesh-free discretizations indicate that spurious wave re�ections
in�uence the results.
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Finally, we would like to mention that the di�erent coupling techniques have some
typical applications. While the bridging domain method was successfully applied in multi-
scale simulations—where often atoms were used instead of particles—as demonstrated by
Xiao [45], the compatibility coupling, e.g. was applied to static failure of reinforced concrete
structures, [13]. Due to the wide application area, the limit of di�erent numerical methods
is not surprising. The development of new coupling method is still a hot topic of ongoing
research.
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