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A lattice Boltzmann method for shock wave propagation in solids
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SUMMARY

This paper proposes a new lattice Boltzmann (LB) method for the study of shock wave propagation in
elastic solids. The method, which implements a flux-corrected transport (FCT) algorithm, contains three
stages: collision, streaming, and correction. In the collision stage, distribution functions are updated. In the
streaming stage, the distribution functions are shifted between lattice points. Generally, a partial differential
equation (PDE) is solved in the streaming stage, and finite element methods are employed to support the
use of unstructured meshes in the LB method. The FCT algorithm is used in the correction stage to revise
the distribution functions at lattice points, so fluctuations behind shock wave fronts can be eliminated
efficiently. In this method, schemes for shock wave reflection at fixed and free boundaries are developed
based on the bounce-back technique. A similar technique is used to treat wave reflection and transmission
at material interfaces of composites. Several one-dimensional examples show that this LB-FCT method
can provide ideal depictions of shock wave propagation in structures, especially composite structures.
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1. INTRODUCTION

Some failure patterns of structures under dynamic loads, including spall fractures, radial fractures,
and corner fractures, are due to shock wave interactions. Therefore, studies of shock wave propaga-
tion in solids will help us to understand the mechanisms of material failures under conditions of high
pressure, velocity, and/or temperature as well as within very brief time intervals [1–3]. Numerical
simulation has become a potential tool to explain such failure mechanisms [3–5]. However, most
numerical methods experience difficulties in simulating shock wave propagation problems, since
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72 S. XIAO

oscillations are always observed behind shock wave fronts. Therefore, non-oscillatory methods for
shock wave propagation studies are always appealing.

Recently, lattice Boltzmann (LB) methods are of interest concerning the simulations of complex
phenomena in hydrodynamics [6, 7], physics [8], mathematics [9], and chemistry [10]. The LB
method, which was deeply rooted in the cellular automata (CA) modelling approach [11], contains
two stages: collision and streaming. Particle distribution functions are updated in the collision
stage, and they are shifted between lattice points in the streaming stage. Several LB models were
developed with various approximations. Higuera et al. [12] enhanced the collision stage with the
linearization of a collision operator. Xi and his coworkers proposed a discrete Boltzmann equation
method [13, 14], which was based on the discretization of the Boltzmann equation [15] in space and
time using the finite volume method. The finite difference method also was used for the disretization
of the Boltzmann equation [16, 17]. Extensive research has been performed on the treatment of
initial and boundary conditions [18–21]; however, the conventional LB methods require uniform
meshes and encounter some difficulties with the problems involving complex geometries. He and
his coworkers [22] made some progresses using LB methods, so the Navier–Stokes equation can
be simulated on nonuniform mesh grids. Lee and Lin [23, 24] implemented a finite element method
based on characteristics of the Galerkin method into LB methods for unstructured meshes.

LB methods have been used successfully in the field of computational fluid dynamics. It is of
interest to extend such methods to solid mechanics. LB methods have been applied to simulate
fluid–particle or fluid–structure interactions [8, 25–29]. In a solid body, the dynamics of the forces
were illustrated using a LB formulation of a wave process, since elastic deformations in a solid
propagate as waves. Chopard and Luthi [8] used an LB method to study fracture phenomena
and obtained quality results. Since LB equations are derived from wave equations, LB methods
have potential to study the shock wave propagation in solids. Most numerical methods, including
finite element methods [30], have trouble catching shock wave fronts, because fluctuations are
always observed behind wave fronts. Such phenomenon also can be seen when LB methods
are used. One common technique used to reduce fluctuations behind shock wave fronts is the
artificial bulk viscosity [31]. It can efficiently eliminate fluctuations, but shock wave fronts are
observed to be spread over several elements or space step sizes. Moreover, the total energy of
the system somewhat dissipates due to the artificial bulk viscosity. Studies have shown that the
flux-corrected transport (FCT) algorithm can perfectly solve the issues mentioned above. Boris
and Book first proposed the FCT algorithm [32, 33] in the 1970s. This algorithm consists of two
stages: a transport stage and an antidiffusion stage. The antidiffusion stage is a corrective stage,
which corrects numerical errors introduced in the transport stage. Both stages are conservative
and positive. Their interaction enables the FCT algorithm to treat discontinuities without the usual
dispersively generated ripples (oscillations). The FCT algorithm has been applied in different
schemes of finite difference methods [33], and satisfactory results were obtained for shock test
problems [32] in fluids. Moreover, implementations of the FCT algorithm in finite element methods
have been conducted by Zhang et al. [34] and Xiao [35].

We develop a new LB method, which implements the FCT algorithm, in this paper to simulate
shock wave propagation problems in solids. The macroscopic quantity related to the microscopic
distribution functions is velocity in this method, and the Boltzmann equation is modified for solid
mechanics. Different initial and nonzero prescribed boundary conditions are treated. The techniques
based on the bounce-back schemes are modified to treat free boundaries, fixed boundaries, and
material interfaces for shock wave reflection and transmission. The new LB method contains three
stages: collision, streaming, and correction. After distribution functions are updated in the collision
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AN LB METHOD FOR SHOCK WAVE PROPAGATION 73

stage, they are shifted between lattice points in the streaming stage. Finite element methods can
be used in the streaming stage. Then, the distribution functions will be corrected using the FCT
algorithm in the correction stage.

The outline of this paper is as follows: A new LB method for shock wave propagation in solids
is proposed in Section 2. The treatments of initial and nonzero prescribed boundary conditions are
described as well as wave reflections and transmissions on free boundaries, fixed boundaries, and
material interfaces. Finite element methods are introduced to solve the PDE in the streaming stage in
Section 3. In Section 4, an FCT algorithm is implemented to correct distribution functions at lattice
points so that fluctuations behind shock wave fronts can be eliminated. Several one-dimensional
examples are studied in Section 5 to show the advantages of the proposed LB method. The
conclusions follow.

2. LB METHOD FOR ELASTIC SOLIDS

2.1. LB method

In an LB method, a particle distribution function fi (x, t) is defined at each lattice point x and
each discrete time t . The index i is associated with a lattice direction ci . For example, in a two-
dimensional square lattice, i = 1 labels the right direction c1 = (1, 0), i = 2 labels the up direction
c2 = (0, 1), and so on. The discrete Boltzmann equation is written as:

Dfi
Dt

=−1

�
( fi − f (0)

i ) (1)

where D/Dt = (�/�t) + ei · ∇ is the Lagrangian derivative along characteristics; ei is the
discrete microscopic velocity; � is the relaxation parameter of collision; and f (0)

i is the equi-
librium distribution function.

Generally, in LB methods for the Navier–Stokes equation, macroscopic quantities, the density
�, and the momentum J can be defined via the standard procedure of statistical mechanics [36] as

�= �= ∑
i
fi , J= �v= ∑

i
fiei (2)

A new LB method is developed to solve solid mechanics problems in this paper with some mod-
ifications based on Reference [27]. Here, � = 1/2, which ensures reversibility, and the microscopic
velocity ei is defined as

ei =Cci = ci

√
E

�
(3)

where C is the wave speed; E is the Young’s modulus; and � is the density. The macroscopic
quantity w is defined as the velocity, i.e. w(x, t) = v(x, t) = ∑

i fi (x, t). w(x, t) and its corre-
sponding microscopic distribution functions, fi (x, t), are vectors in multidimensional problems,
so w={�x , �y,�z} and fi = { fi x , fiy, fi z}. Since the microscopic velocity ei coincides with the
wave speed, there are no rest fields f0(x, t). The equilibrium distribution function is defined as

f (0)
i� (x, t) = 1

D
��(x, t) + 1

2
ci · J�(x, t) (4)
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74 S. XIAO

where D is the dimension of the microscopic velocity ei , and J�(x, t) = ∑
ici fi�(x, t).

Equation (1) can be used to obtain distribution functions at the time tn+1 if the distribution
functions at the time tn are known:

fi (x(tn) + ei�t, tn+1) = fi (x(tn), tn) − �t

�
[fi (x(tn), tn) − f(0)i (x(tn), tn)] (5)

When Eulerian description [24] is used, Equation (1) or (5) can be expressed in a two-stage
framework:

• Collision:

fi (x, tn) = fi (x, tn) − �t

�
[fi (x, tn) − f(0)i (x, tn)] (6)

• Streaming:

fi (x + Cci�t, tn+1) = fi (x, tn) (7)

Generally, the streaming stage can be written to solve the following PDE:

�fi
�t

+ ei · ∇fi = 0 (8)

Equation (7) requires that the distance between two adjacent lattice points, �x , is the distance
that a wave travels during one time step �t , i.e. �x =C�t , in each dimension. This distance is
called the critical distance here, and it is denoted by �xc. If �x<�xc, numerical simulations will
be unstable due to the Courant condition. Equation (8) can be simplified to Equation (7) if the
critical distance and the upwind finite difference method are used. In this paper, we only focus on
one-dimensional problems, so Equation (8) can be written as

� fi
�t

+ Cci
� fi
�x

= 0 (9)

where c1 =−1 and c2 = 1 denote left and right directions, respectively. Next, we will describe
the treatments for initial conditions, boundary conditions, and material interfaces under one-
dimensional situations. Such techniques can easily be applied to multidimensional problems.

2.2. Initial and boundary conditions

We consider a one-dimensional lattice (chain) as shown in Figure 1. The number of lattice points
is N and the left and right boundary points are point 1 and point N . If an initial velocity v0 is

I N-1 N

c1
c2

............
c1

c1c2c2

1 2

Figure 1. A one-dimensional lattice (chain).
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applied on the lattice point I , the distribution functions of this lattice point at time t = 0 can be
set as

fi (xI , 0) =

⎧⎪⎨
⎪⎩

v0, i = 2, I = 1
1
2v0, i = 1, 2, I �= 1, N

v0, i = 1, I = N

(10)

If an initial force F0 or an initial displacement u0 is applied, the corresponding initial velocities
can be written as v0 = (F0/mI )�t or v0 = u0/�t , respectively, where mI is the mass associated
with the lattice point I . A similar formulation can be written for nonzero prescribed velocities
v̄1(t) and v̄N (t), at boundary points:

f2(x1, t) = v̄1(t), f1(xN , t) = v̄N (t) (11)

Bounce-back scheme [8] was used in most LB methods for fluid flows. However, the mechanisms
of wave reflections on free boundaries and fixed boundaries are different in solids. The modified
bounce-back scheme can be written as

f2(x1, t) = �1 f1(x1, t), f1(xN , t) = �2 f2(xN , t) (12)

where �1 = �2 = 1 is for free boundary reflection, and �1 = �2 = −1 is for fixed boundary reflection.
Distribution functions as shown by the direction of the dashed arrows in Figure 1 will be bounced
back. After the streaming stage, the distribution function, f1(x1, t), will be reflected to be f2(x1, t)
at boundary point 1, while f2(xN , t) will be reflected to be f1(xN , t) at boundary point N . The
sign of the magnitude will be changed or kept the same according to boundary conditions. We
know that when waves reach boundaries, velocities will be zero at fixed boundaries and double at
free boundaries.

As a macroscopic quantity, the velocity is the summation of microscopic distribution functions,
i.e. v(x, t) =�(x, t) = f1(x, t)+ f2(x, t). Therefore, Equation (12) exactly reproduces the physical
phenomena observed when waves are reflected at boundaries. During numerical simulations, the
modified bounce-back schemes are applied immediately after the streaming stage. The nonzero
prescribed boundary conditions Equation (11) can be applied at the beginning of each time iteration.

2.3. Material interface

If waves propagate in a composite material, wave reflection and transmission can be observed at
material interfaces as shown in Figure 2. When an incident wave in material A reaches a material
interface �, part of the wave will be reflected and still propagate in material A. The rest of the
wave will be transmitted through the interface and propagate in material B. Let �AB denote the
ratio of the acoustic impedance of material A to the one of material B. Then, it can be written as

�AB = (�ACA)/(�BCB) = √
EA�A/

√
EB�B (13)

Obviously, �BA = �−1
AB. The transmission and reflection coefficients for wave propagating from

material A to B are denoted by CT
AB and CR

AB, and they can be written as

CT
AB = 2

1 + �AB
, CR

AB = 1 − �AB
1 + �AB

(14)

We can see that CR
AB + 1=CT

AB is satisfied.
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material A material B

incident wave

reflected wave

transmitted wave

interface Γ

Figure 2. Wave reflection and transmission at a material interface.
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Figure 3. LB modelling of a material interface in one-dimensional lattice (chain).

An LB modelling of a material interface is shown in Figure 3 for a one-dimensional problem.
There are M lattice points uniformly arranged in material A, and N lattice points in material B.
Points M and M + 1 are coincident at the material interface �. After the streaming stage, the
distribution functions f2(xM , t) at point M and f1(xM+1, t) at point M + 1 will be reflected and
transmitted at the interface. The distribution function f2(xM+1, t) of point M + 1 is contributed
by the transmission of f2(xM , t) and the reflection of f1(xM+1, t) based on the following rule:

f2(xM+1, t) =CT
AB f2(xM , t) + CR

BA f1(xM+1, t) (15)

Similarly, the distribution function f1(xM , t) at point M can be written as

f1(xM , t) =CT
BA f1(xM+1, t) + CR

AB f2(xM , t) (16)

where CT
BA and CR

BA are the transmission and reflection coefficients when wave propagating from
material B to material A. Finally, we allow f2(xM , t) = f2(xM+1, t) and f1(xM+1, t) = f1(xM , t)
to enforce the compatibility between lattice points M and M + 1.

In one-dimensional problems, if materials A and B have different areas of cross-section, AA
and AB, the ratio of the acoustic impedances in Equation (13) can be written as

�AB = (�ACAAA)/(�BCBAB) = √
EA�AAA/

√
EB�BAB (17)
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3. FINITE ELEMENT METHODS IN THE STREAMING STAGE

The streaming stage is a key stage in LB methods. As mentioned before, the critical distance
�xc =C�t does not have to be used as the distance between two adjacent lattice points. The
general streaming stage is solving a PDE, as shown in Equation (9). Finite difference methods
were widely used, but they require structured meshes. Unstructured meshes have more potential,
especially for multidimensional problems. Therefore, finite element methods are introduced, so
the proposed LB method can be applied to multidimensional problems with arbitrary geometries.

Generally, a Lax–Wendroff scheme [24] is used to approximate Equation (9), and it is:

fi (xn, tn+1) − fi (xn, tn)

�t
= −ciC

� fi (xn, tn)
�x

+ �t

2
C2 �2 fi (xn, tn)

�x2
(18)

Equation (18) can be viewed as a continuous equation in space domain, and finite element
methods can be used to solve it in the streaming stage. The lattice points are set on the vertices
of the elements. The distribution function field can be approached using the finite element
approximation

f hi (x, tn) = ∑
I
NI (x) fi (xI , tn) (19)

where NI (x) are shape functions, and they reproduce constant functions and linear functions, i.e.∑
I NI (x)= 1 and

∑
I (�NI (x)/�x)xI = 1. The weak form of Equation (18) can be derived by

using the Galerkin method:∫
�

w[ fi (x, tn+1) − fi (x, tn)] d�

= −ci�tC
∫

�
w

� fi (x, tn)
�x

d� − �t2C2

2

[∫
�

�w

�x
� fi (x, tn)

�x
d�

−
∫

�
w

� fi (x, tn)
�x

nx d�

]
(20)

where w is the weight function. Note that Green–Gauss theorem is used here. After substituting
Equation (19) into Equation (20), an FE equation can be obtained:

MIJ[ fi (xJ , tn+1) − fi (xJ , tn)]

=−ci�tCK �
IJ fi (xJ , tn) − �t2C2

2
(K �

IJ − K �
IJ) fi (xJ , tn+1) (21)

where

MIJ =
∫

�
NI (x)NJ (x) d�, K �

IJ =
∫

�
NI (x)

�NJ (x)

�x
d� (22)

K �
IJ =

∫
�

�NI (x)

�x
�NJ (x)

�x
d�, K �

IJ =
∫

�
NI (x)

�NJ (x)

�x
nx d� (23)
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For simplification, a lumped matrix is used to replace the consistent matrix MIJ :

MIJ = 	IJ
∑
K

∫
�
NI (x)NK (x) d� (24)

In fact, we borrow the lumped mass matrix idea, because the above matrix can be viewed as
the mass matrix for the material with the density � = 1. Here, MI is used to denote the diagonal
components of the lumped matrix in Equation (24).

K �
IJ is produced by a surface integration where nx is the normal direction of the surface, and it

is −1 on the left boundary point and 1 on the right boundary point in one-dimension problems.
Therefore, in the streaming step the following equation will be solved to shift distribution functions
at lattice points:

fi (xI , tn+1) = fi (xI , tn) − �tC

MI

[
ci K

�
IJ + �tC

2
(K �

IJ − K �
IJ)

]
fi (xJ , tn) (25)

Once distribution functions are shifted in the streaming stage, the motion of lattice points and
strain/stress fields can be obtained as

v(xI , t) = �(xI , t) = f1(xI , t) + f2(xI , t) (26)

u(xI , t) = v(xI , t)�t (27)


(x, t) = �u(x, t)

�x
= ∑

I

�NI (x)

�x
u(xI , t) (28)

�(x, t) = E
(x, t) (29)

where u(xI , t) is the displacement of point I ; 
 is the uniaxial strain; and � is the uniaxial stress.

4. IMPLEMENTATION OF THE FCT ALGORITHM

The FCT algorithm was first used in finite difference methods [32, 33]. Some researchers have
implemented it into finite element methods [34, 35] once differential equations are in need of
solving and discontinuities are in need of treatment. It can also be implemented into the LB
method to assist us in simulating shock wave propagations in solids.

Since Equation (9) is the only PDE solved in the streaming stage, the FCT algorithm can be
applied after each streaming step to correct distribution functions at lattice points. The flowchart
for the FCT algorithm in the proposed LB method can be written as follows after trial distribution
functions, f̃i (xI , tn+1), are obtained from solving Equation (9) using finite element method.

(a) Calculate the diffusive fluxes:

�0
i I = 1( fi (xI+ci , tn) − fi (xI , tn)) (30)

(b) Diffusion:

f̄i (xI , tn+1) = f̃i (xI , tn+1) + �0
i I − �0

i I−ci (31)
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AN LB METHOD FOR SHOCK WAVE PROPAGATION 79

(c) Calculate antidiffusive fluxes:

�1
i I = 2( f̃i (xI+ci , tn+1) − f̃i (xI , tn+1)) (32)

(d) Apply limitation of antidiffusive fluxes:

�C
i I = S · max{0,min[S · �i I−1, |�1

i I |, S · �i I+1]} (33)

where �i I = f̄i (xI+ci , tn+1) − f̄i (xI , tn+1), and S = sign(�1
i I ).

(e) Antidiffusion:

fi (xI , tn+1) = f̄i (xI , tn+1) − �C
i I + �C

i I−ci (34)

Note ci is used in the subscripts of x , since there are two directions for distribution functions
at each lattice point. Therefore, the new LB method for shock wave propagation in solids contains
three stages:

• Collision:

fi (x, tn) = fi (x, tn) − 2�t[ fi (x, tn) − f (0)
i (x, tn)] (35)

• Streaming: using the FD method, the FE method, or the MP method to shift fi

� fi
�t

+ ei
� fi
�x

= 0 (36)

• Correction: using the FCT algorithm to correct fi .

In this paper, the diffusive and antidiffusive coefficients are constant, i.e. 1 = 2 = 0.125 [32, 33].

5. EXAMPLES

Shock wave propagation in a one-dimensional elastic rod will be studied in the following examples
with various initial and boundary conditions. In most cases, the material properties are given as
follows without notice: the length L = 1 m, the density � = 100 kg/m3, the area of cross-section
of the rod A= 1 m2, and the Young’s modulus E = 106 N/m2. Therefore, the wave speed in this
elastic rod is C = √

E/�= 100 m/s. The time step used in this paper is 5× 10−6 s, so the critical
space size is �xc =C�t = 5× 10−4 m. The lattice spacing should be larger than or equal to the
critical space size for stable numerical simulations.

5.1. Dynamic loads applied on one end

A dynamic load (force) is applied on the left end of the rod, as shown in Figure 4 where
f0 = 10 000 N, and t0 = 4× 10−3 s. Then, then prescribed boundary condition is

f2(x1, t) = f0�t

m1
, t<t0 (37)

A 1001 lattice points are used in this example. Figure 5 shows the perfect evolutions of shock
waves at t1 = 5× 10−3 s, t2 = 1.3× 10−2 s and t3 = 1.8× 10−2 s. There is a stress wave propagating
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f0

t0

Figure 4. A dynamic load is applied on the left end of the rod whose right end is free.
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Figure 5. Evolutions of shock waves: (a) stress; and (b) velocity.

after the initial force loads. It is a compressive stress wave (the magnitude is negative here) as
shown in Figure 5(a). Since the right end of the rod is free, the compressive stress shock wave
becomes a tensile stress shock wave after reflection. We know that the mechanism of velocity
wave propagation is different from stress wave propagation. In Figure 5(b), we can see that the
magnitude of the velocity wave keeps the same sign after the reflection at the free boundary.

5.2. Shock wave propagation in a composite rod

An elastic composite rod is loaded by a velocity pulse as shown in Figure 6, where v0 = 10m/s and
t0 = 2.5× 10−3s. Material A has the same material properties as we used before. The Young’s mod-
ulus of the material B is EB = 6.4× 105N/m2, and the density is �B = �A = 100 kg/m3. Therefore,
the ratio of the acoustic impedances of material A to material B is �AB = √

EA/EB = 1.25. The
transmission and reflection coefficients from material A to material B can be calculated according
to Equation (14):

CR
AB = 1 − �AB

1 + �AB
= −0.11, CT

AB = 2

1 + �AB
= 0.89 (38)
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material A

t0

v0

material B

Figure 6. An elastic composite rod loaded by a velocity pulse.
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Figure 7. Evolution of the shock wave in an elastic composite rod: (a) conventional finite element
simulation; and (b) LB simulation with the FCT algorithm.

When the shock wave reaches the material interface, part of it will be reflected back and the
rest will transmit at the material interface. Figure 7 shows the evolution of shock waves in this
elastic composite rod at t1 = 2.5× 10−3 s, t2 = 8.5× 10−3 s and t3 = 1.5× 10−2 s. The results from
the conventional finite element simulation are shown in Figure 7(a). It is difficult to decipher the
reflected shock wave due to the oscillations behind shock wave fronts. However, the LB method
with the FCT algorithm provides perfect results, as shown in Figure 7(b).

5.3. Shock wave propagation in the elastic rod with various areas of cross-section

Figure 8 shows that an elastic composite rod with various areas of cross-section under the prescribed
velocity pulses on both ends, v0 = 10 m/s and t0 = 2.5× 10−3 s. The properties of material A to
B are the same as the previous example. The areas of the cross-section are AA = 1.0 m2 and
AB = 2.0m2 for material A and B, respectively. The ratio of acoustic impedances of material A to
B is �AB = 0.625, so the reflection and transmission coefficients are CR

AB = 0.23 and CT
AB = 1.23.

The evolution of shock waves at t1 = 3.5× 10−3 s and t2 = 9× 10−3 s is shown in Figure 9. When
the waves start to propagate in the rod, two waves propagate with different wave speeds and wave
lengths in different materials. Both of the waves will be reflected and transmitted at the material
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Figure 9. Evolution of shock waves in an elastic composite rod with various areas of cross-sections.

interfaces, and the waves interact when they meet with each other. Similar to what is shown in
Figure 7(a) it will be hard to decipher wave interaction due to fluctuations behind shock wave
fronts. From Figure 9, we can say that the proposed LB method is an ideal method to study the
interactions of shock waves.

6. CONCLUSIONS

A new LB modelling for shock wave propagation in solids is developed in this paper. After
updating distribution functions at the collision stage, finite element methods are used to solve a
general PDE at the streaming stage for distribution functions’ shifting between lattice points. The
use of finite element methods at the streaming stage results in the potential of the LB method for
solving multidimensional problems with unstructured meshes. A new stage, the correction stage,
is added following the streaming stage. In this stage, the FCT algorithm is implemented to correct
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distribution functions at lattice points, so fluctuations behind shock wave fronts can be efficiently
eliminated. Another feature of this LB modelling is that the bounce-back scheme is modified
for various boundary conditions as well as material interfaces. The examples show that the new
LB method can accurately describe the shock wave propagation in solids, including reflection
at boundaries, reflection and transmission at material interfaces, and interaction between shock
waves. Even though this paper primarily focuses on one-dimensional problems in this paper, the pro-
posed LB method has potential to be extended for multidimensional problems. This LB method is
also suitable to study failure patterns of structures, especially composite structures, under
dynamics loads.
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