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A non-oscillatory method for spallation studies
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SUMMARY

This paper introduces a non-oscillatory method, the finite element flux-corrected transport (FE-FCT)
method for spallation studies. This method includes the implementation of a one-dimensional FCT
algorithm into a total Lagrangian finite element method. Consequently, the FE-FCT method can
efficiently eliminate fluctuations behind shock wave fronts without smearing them. In multidimensional
simulations, the one-dimensional FCT algorithm is used on each grid line of the structured meshes
to correct the corresponding component of nodal velocities separately. The requirement of structured
meshes is satisfied by using an implicit function so that arbitrary boundaries of the simulated object
can be described. In this paper, the proposed FE-FCT method is applied in spallation studies. One-
and two-dimensional examples show this non-oscillatory method could be one of the candidates to
accurately predict spallation and the spall thickness. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Spallation is an interesting component of dynamic fracture. Also known as spall, spall fracture,
or by other names, this phenomenon occurs when waves, usually shock waves, interact to
produce a region of tension in the interior of a material body. Therefore, the method that
can precisely describe the shock wave propagation and interaction in solids will improve
our understanding of material spallation mechanism under dynamic loads, such as impact
and explosion. Numerical simulation has become a powerful tool to elucidate the complex
mechanics and physics phenomena, including spallation. Some current numerical methods,
however, demonstrate significant difficulties in modeling spallation due to fluctuations that
are always observed behind shock wave fronts. As a result, development of non-oscillatory
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methods, which can accurately describe the shock wave propagation and interaction in solids,
for spallation studies has become a pertinent focus of research.

Finite difference methods have been used for wave propagation and spallation studies. Eftis
et al. [1] implemented a viscoplastic material description in a finite difference wave propagation
computer code to predict material damage and spall fracture under high strain-rate conditions.
They introduced a scalar variable for the evolution of the material damage into the elasto-
viscoplastic constitutive equations in order to describe rate-dependent, compressible, inelastic
deformation and ductile fracture. Fortov and co-workers [2] developed a two-dimensional finite
difference hydrodynamic elastoplastic code with the Lagrangian description to simulate the
laser-induced spall phenomena. McLaughlin et al. [3] performed three-dimensional linear finite
difference calculations to study the effects of the topographic bench on spalls. More recently,
finite element methods [4] have been applied to simulate wave propagation and spallation.
Fourney et al. [5] used a finite element method to study the fragmentation mechanism in carter
blasting. They obtained the displacements of several points in the crater region which are in
accord with the measured displacements. Finite element simulations have also been used to
study the film spallation process induced by the pulsed laser peening [6]. In addition, molecular
dynamics has recently been applied to analysis of the mechanical behaviour of materials,
including spallation. Wagner et al. [7] showed that the spall strength was proportional to the
logarithm of the applied strain rate when they examined both perfect crystals and granular
solids by using molecular dynamics. Molecular dynamics simulations were also performed to
study the effect of stress triaxiality on void growth in dynamic fracture of metals [8].

It is common to use the artificial bulk viscosity [9] in numerical simulations for shock wave
propagation and spallation studies. The viscosity can efficiently reduce fluctuations behind shock
wave fronts. However, one can observe that the wave fronts are smeared over several elements
or several spacing steps, if finite element or finite difference methods are used, respectively.
Furthermore, the viscosity can result in energy dissipation. Boris and Book [10, 11] proposed a
flux-corrected transport (FCT) algorithm which has the capability to overcome the above issues.
The FCT algorithm was first implemented into the finite difference methods [12]. Since the finite
element methods have currently reached a mature state of development, the incorporation of the
FCT algorithm with the finite element methods will be of significant potential benefit. Löhner
and co-workers [13] combined the FCT algorithm with an Eulerian finite element method and
obtained good results for Navier–Stokes equations. Georghiou et al. [14] developed a similar
two-dimensional finite element-FCT method containing a low-order, positive, ripple-free scheme
and a high-order scheme. This research has been principally conducted to study shocks in fluids.
Zhang and co-workers [15] successfully combined the FCT algorithm with a Lagrangian finite
element method and obtained some interesting results in one-dimensional transition problems.

In this paper, the author will introduce a new finite element flux-correction transport
(FE-FCT) method for spallation studies of structures. In the proposed method, a fundamental
FCT algorithm proposed by Boris and Book [10, 11] is implemented into a total Lagrangian
finite element method with structured meshes. This one-dimensional FCT algorithm contains
two stages: transport and anti-diffusion. Since meshes distort, corresponding to the deformation
of structures under the Lagrangian description, there is no mass flow between elements. As
a result, density flux vanishes in the developed FE-FCT method. Furthermore, only equations
of motion are solved at the transport stage so that the FCT algorithm corrects only nodal
velocities, i.e. nodal momenta during the simulation. The author [16] has used this method to
study wave propagations in solids. Once structured meshes are generated, each component of
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nodal velocities will be corrected independently within each time step along the corresponding
mesh grid lines. According to the examples in Reference [16], this FE-FCT method can give
accurate examples of shock wave propagation for both one- and two-dimensional problems.
In other words, the FE-FCT method can efficiently eliminate fluctuations behind shock wave
fronts while simultaneously maintaining shock wave fronts. However, the requirement of struc-
tured meshes for the implementation of the FCT algorithm in this FE-FCT method will prevent
simulating objects with arbitrary boundaries, especially in multidimensional problems. The au-
thor introduces an implicit function, similar to the one used in the structured extended finite
element method [17, 18], as well as the level set approach [19, 20], to describe boundaries of
the simulated objects. This implicit function enables the FE-FCT method to model boundaries
that are not coincident with the mesh. Since the FE-FCT method is advantageous in simulating
shock wave propagations in solids, it will have the significant potential to study the spallation
due to shock wave interacting. In this paper, the author will employ this non-oscillatory method
in spallation studies. Several damage models will be introduced, and the computational results
will be compared with the experimental data.

The outline of this paper is as follows. In Section 2, the general introduction of the FE-FCT
method is given. It includes descriptions of the governing equations, the FCT algorithm and
the implicit function. A one-dimensional example in Section 3 shows the FE-FCT method
has the ability to accurately predict shock wave propagation and spallation. Several one- and
two-dimensional spallation examples with various damage models are studied in Section 4,
compared with the experimental data, and followed by the conclusions.

2. THE FE-FCT METHOD

2.1. Governing equations

The material (Lagrangian) form of momentum equations can be written as

∇0 · P + �0b = �0ü or
�Pji

�Xj

+ �0bi = �0üi (1)

where �0 is the initial density, P is the nominal stress tensor, b is the body force, u is
the displacement, X are the material (Lagrangian) co-ordinates, and the superposed dots de-
note material time derivatives. Indices repeated twice in a term are summed in this paper.
Equation (1) is formulated in the reference configuration �0. The above form of the momen-
tum equations can be written in a spatial form so that

∇ · � + �b = �ü or
��ji

�xj

+ �bi = �üi (2)

where � is the current density, � is the Cauchy stress, and x are the spatial (Eulerian)
co-ordinates. By conservation of mass, there is

�J = �0 (3)
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where J is the Jacobian determinant of deformation gradient F, which are defined by

J = det(F) Fij = �xi

�Xj

(4)

The two forms of momentum equations in (1) and (2) are equivalent and differ in form
only because they are expressed in different descriptions; see Reference [21]. In this paper, the
author will use a total Lagrangian finite element method to solve momentum equations of (1);
and the FE approximation for the displacement field is

uh(X, t) = NT(X)u(t) or uh
i (X, t) = NJ (X)uiJ (t) (5)

where the shape function NJ (X) is a function of material co-ordinates in the total Lagrangian
description, and uJ (t) = u(XJ , t) represent nodal displacements. The approximation for the first
derivatives of the displacement, with respect to the material co-ordinates, can be written as

∇0uh(X, t) = BT(X)u(t) or
�uh

i (X, t)

�Xj

= �NJ (X)

�Xj

uiJ (t) (6)

The discrete momentum equation can be obtained by using the Galerkin weak form. In the
reference configuration, the weak form of the linear momentum conservation equation (1) is∫

�0

�ui�0üi d�0 =
∫

�0

�ui�0bi d�0 −
∫

�0

�FijPji d�0 +
∫

�t
0

�ui t̄i d�t
0 (7)

where �ui is the test function, and t̄i is the boundary traction on the traction boundary �t
0.

Substituting (5) and (6) into (7) and using a diagonal mass matrix, the discrete equations can
be obtained as

Mü = fext − f int or MI üiI = f ext
iI − f int

iI (8)

where MI is the nodal mass of node I ; and f ext
iI , f int

iI are the external and internal nodal
forces, respectively, which are given by

f ext
iI =

∫
�0

�0NI (X)bi d�0 +
∫

�t
0

NI (X)t̄i d�t
0 (9)

f int
iI =

∫
�0

�NI (X)

�Xj

Pji d�0 (10)

2.2. Implementation of the flux-corrected transport algorithm

There are two stages in the FCT algorithm. One is the transport stage and the other is
the anti-diffusion stage. The transport stage contains the time integration step to solve the
discrete equations. The anti-diffusion stage is a corrective stage which corrects numerical errors
introduced in the transport stage. Both stages are conservative and positive. Their interaction
enables the FCT algorithm to treat discontinuities without the dispersively generated ripples
(oscillations). The FCT algorithm was first developed for finite difference methods [10, 11] to
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flawlessly solve shock wave propagation problems. As an instance of the usage of the FCT
algorithm, the author considers a function U , which is a function of time and space in one
dimension, in a finite element model with a regular mesh. The nodal value of function U at
node j and time step n + 1 can be written as

Un+1
j = U(Xj , t + �t) = f (Un, �t, �X) (11)

where �t is the time-step size, �X is the mesh size, and Un represents a vector of nodal
values of the function at time t . If the function U has strong discontinuities, one can observe
fluctuations around the discontinuities. Therefore, an additional treatment, such as the FCT
algorithm, is needed to eliminate fluctuations. The general one-dimensional FCT algorithm [10]
can be expressed as follows:

(a) Transport calculation: obtaining trial values of function U at time step n + 1 from (11)

Ũn+1
j = f (Un, �t, �X) (12)

(b) Diffusive flux calculations:

�0
j = �1(U

n
j+1 − Un

j ) (13)

where �1 is a diffusive coefficient.
(c) Diffusion:

Ūn+1
j = Ũn+1

j + �0
j − �0

j−1 (14)

(d) Anti-diffusive flux calculations:

�1
j = �2(Ũ

n
j+1 − Ũn

j ) (15)

where �2 is an anti-diffusive coefficient.
(e) Limitation of anti-diffusive fluxes:

�C
j = S · max{0, min[S · �j−1, |�1

j |, S · �j+1]} (16)

where �j−1 = Ūn+1
j − Ūn+1

j−1 , and S = sign(�1
j ).

(f) Anti-diffusion:

Un+1
j = Ūn+1

j − �C
j + �C

j−1 (17)

In this paper, the diffusive coefficient and anti-diffusive coefficient are constant (i.e. �1 = �2 =
0.125 [10]); and the FCT algorithm is shown to be an efficient and accurate process [10, 11].
Since the FE-FCT method is under a Lagrangian description, there is no mass flow between
elements. On the other hand, only the equations of motion are solved in the transport stage of
the FCT algorithm. The discrete equations can be written as the following differential equations:

v̇iI = f ext
iI − f int

iI

MI

(18)
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φ(X )<0 Γ

φ(X )=0

φ(X )>0

Ω0

Figure 1. An object described by an implicit function under a structured mesh.

The author would like to note, here, that multidimensional FCT algorithms has been proposed
by Zalesak [22] for fluids and been implemented into a two-dimensional finite element method
for gas discharge problems [14]. However, since each component of the velocity is independently
solved in multidimensional problems as shown in (18), the one-dimensional FCT algorithm can
be used to correct nodal velocities, i.e. nodal momenta. The correction is applied along each
grid line as long as structured meshes are provided. Generally, in a one-dimensional problem,
the nodal velocities are corrected along the one-dimensional grid. In two-dimensional cases with
two-dimensional quadrilateral meshes, horizontal and vertical grid lines occur in the reference
configuration. After time integration of equations of motion at the transport stage, the FCT
algorithm will correct the x components of nodal velocities along each horizontal grid line
independently. Similarly, the y components of nodal velocities are corrected separately along
each vertical grid line. Then, the calculations of displacements, strains, stresses and energy are
based on the corrected nodal velocities.

2.3. Implementation of an implicit function

The FCT algorithm, described in the above, is easy to implement in finite element methods.
However, such implementation requires regular meshes or structured meshes. The conventional
finite element methods with structured meshes have difficulty solving multidimensional problems
with arbitrary boundaries. Here, the author uses an implicit function [17, 18] to describe the
arbitrary boundaries in the finite element methods. Figure 1 shows an object with body �0 and
boundary � under a structured mesh in the reference configuration. The simulated object can
be described by an implicit function �(X) so that

�(X) = 0 on �

�(X) > 0 inside �0

�(X) < 0 outside �0

(19)
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The implicit function can be initially chosen as a signed distance function or defined by
radial basis functions from a set of points. Therefore, the weak form (7) can be rewritten as∫

�0

�uiH(�)�0üi d�0 =
∫

�0

�uiH(�)�0bi d�0

−
∫

�0

H(�)�FijPji d�0 +
∫

�t
�ui t̄i d�t (20)

where

H(�) = H(�(X)) =
{

0 � < 0

1 � � 0
(21)

Then, (9) and (10) for nodal forces can be rewritten as

f ext
iI =

∫
�0

�0H(�)NI (X)bi d�0 +
∫

�t
NI (X)t̄i d�t (22)

f int
iI =

∫
�0

H(�)
�NI (X)

�Xj

Pji d�0 (23)

The above equation shows that only part of an element, which is crossed by the boundary,
contributes to �0. Therefore, the integration procedure is more involved. A simple way [17]
to perform the integrations in (22) and (23) is to cut each element into several subelements
by the boundary. Then, the quadratures over the element consist of the quadratures over those
subelements. The integration on the traction boundary involves quadratures over the zero isobar
of the FE approximated implicit function. The details can be found in References [17, 18].

2.4. Flowchart of the FE-FCT method

In short, the flowchart for the FE-FCT method can be written as follows:

(a) Generate a structured mesh and set initial values of material state variables.
(b) Construct an implicit function to describe the boundaries.
(c) Calculate nodal forces as (22) and (23).
(d) Obtain trial velocities: ṽn+1

iI = vn
iI + ((f ext

iI − f int
iI )/MI )�t .

(e) Calculate diffusive fluxes: �0
iI = �1(v

n
iI+1 − vn

iI ).

(f) Diffuse: v̄n+1
iI = ṽn+1

iI + �0
iI − �0

iI−1.
(g) Calculate anti-diffusive fluxes: �1

iI = �2(ṽ
n
iI+1 − ṽn

iI ).
(h) Apply limitation of anti-diffusive fluxes:

�C
iI = S · max{0, min[S · �iI−1, |�1

iI |, S · �iI+1]}
where �iI−1 = v̄n+1

iI − v̄n+1
iI−1, and S = sign(�1

iI ).

(i) Anti-diffuse: vn+1
iI = v̄n+1

iI − �C
iI + �C

iI−1.
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( j) Update displacements and apply boundary conditions.
(k) Calculate strains and stresses.
(1) Output; if simulation is not complete, go to (c).

During the calculation of flux, diffusing, and anti-diffusing, node I + 1 or I − 1 are the
neighbour nodes of node I on the same grid line. Fluxes �iI one calculated for the ith
component of nodal velocities along each grid line that is parallel to i (x or y) axis.

3. ADVANTAGES OF THE FE-FCT METHOD FOR SPALLATION SIMULATIONS

The FCT algorithm was first implemented in finite difference methods. Finite difference FCT
methods have been widely used to model shock wave propagation in fluids [13, 14]. The
FCT algorithm contains two stages: the transport stage and the anti-diffusion stage. Since the
governing equations in finite difference methods, solved in the transport stage, contain a number
of differential equations, multiple fluxes need to be corrected at the anti-diffusion stage of the
FCT algorithm. When using finite element methods in solids, however, the discrete equations
of motion are the only type of differential equations that must be solved at the transport stage
of the FCT algorithm. Moreover, the Lagrangian finite element method is used, so that there
is no mass flow between elements, i.e. no density flux in this model. Therefore, the FCT
algorithm is used to correct only nodal velocities, i.e. nodal momenta. Consequently, once the
structured meshes have been generated, each component of the nodal velocities is corrected
separately within each time step along the grid lines. The one-dimensional FCT algorithm used
in the paper is a fundamental scheme proposed by Boris and Book [10, 11], which, unlike other
methods [14], does not require low-order and high-order schemes. The implementation of the
FCT algorithm in the proposed FE-FCT method is therefore simpler than those used in most
finite difference methods, and the FE-FCT method has been proven to be efficient for studying
wave propagations in solids [16]. The following example will demonstrate the advantages of
FE-FCT method on spall prediction and spall-thickness calculation.

Figure 2 illustrates a one-dimensional rod subjected to a triangular compressive pulse. The
length of the rod is L = 1.0 m. The pulse is with �0 = 5000.0 N/m2 and t0 = 0.05 s. The material
properties of the rod are Young’s modulus E = 10 000.0 N/m2 and the density �0 = 100 Kg/m3.
One thousand elements are used in this example.

t0

σ0

L

Figure 2. An elastic rod with a triangular compressive pulse load.
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Figure 3. The configurations of stress wave at t = 0.075 s using the FE-FCT method compared with:
(a) the FEM without viscosity; and (b) the FEM with viscosity.

Table I. Comparison of the spallation prediction and spall thicknesses.

Theoretical The FE-FCT The FEM with The FEM without
Spall stress analysis method viscosity viscosity

5500 Pa No spallation No spallation No spallation 0.152 m
4500 Pa 0.225 m 0.226 m 0.230 m 0.201 m
2000 Pa 0.1 m 0.101 m 0.106 m 0.04 m

A compressive stress wave begins to propagate once the pulse is loaded. Figure 3 shows
the stress wave calculated by the FE-FCT method, compared with the results of the finite
element method (FEM) with or without viscosity. Figure 3(a) shows that the FE-FCT method
can efficiently eliminate fluctuations behind the shock wave front normally observed when
employing the finite element method without viscosity. Although the bulk viscosity can also
eliminate the fluctuations, the shock wave front is smeared over several elements, as shown
in Figure 3(b). This non-physical phenomenon will result in a blurred description of shock
wave propagation and interaction. Another disadvantage of bulk viscosity is that system energy
dissipates as discussed in Reference [16]. In contrast, the FE-FCT method can retain the strong
discontinuity of the shock wave front as well as maintain conservation of energy [16].

In this demonstration, the reflection of the compressive stress wave at the free end of the
rod generates a tensile stress wave. We assume that spallation occurs when the reflected tensile
stress is beyond the spall stress. Such a simple spall criterion is only used for the purpose of
demonstrating the advantages of FE-FCT application in this paper, however. Various void nu-
cleation and growth models for spallation studies will be introduced in the next section. Table I
presents spall thicknesses, which are calculated by using the FE-FCT method, compared with
the ones from the theoretical analysis and finite element methods with or without viscosity.
The theoretical analysis was performed by solving a wave equation. Various spall stresses are
considered during the comparison. Based on the theoretical analysis, defining a spall stress
of �s = 5500 N/m2, which is larger than the peak stress of the fully reflected tensile stress
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target plate (Copper)flyer plate (Aluminum)

0.012m0.002m

v0

Figure 4. A flyer plate impacts a target plate (a one-dimensional model).

Table II. Material properties of aluminium and copper.

Density Young’s modulus Poisson’s ratio
�0(Kg/m3) E(GPa) �

Aluminum 2785 100 0.33
Copper 8930 170 0.35

wave, results in no occurrence of spallation. The same prediction is obtained from the FE-
FCT method as well as the finite element method with viscosity. However, the finite element
method without viscosity predicts that spallation will occur, due to fluctuations of the peak
stress beyond the spall stress. This example is illustrated in Figure 3(a). For low spall stresses,
the spall thicknesses predicted by the FE-FCT method are very close to the theoretical results.
The FE-FCT results are better than those predicted using the finite element method with vis-
cosity, and much better than those obtained from the finite element method without viscosity.
Therefore, the FE-FCT method demonstrates significant advantage for spallation analysis.

4. EXAMPLES

4.1. A one-dimensional spallation simulation with the DFRACT damage model

A one-dimensional FE-FCT model is used to simulate impact-driven spallation as shown in
Figure 4. A flyer plate of aluminium with the velocity of v0 = 450 m/s impacts a target plate
of copper. In this one-dimensional finite element model, there are 1200 elements in the target
plate and 200 elements in the flyer plate. The material properties of aluminum and copper are
listed in Table II. The condition of impenetrability [21] is used here to check if the flyer and
the target are in contact or separated.

A ductile fracture model, called DFRACT [23], is used to deal with the processes of
nucleation and growth of a large number of microvoids. This model includes nucleation and
growth based on microphysical models, and it also describes the effect of growing damage on
the stress–strain relations. The effective shear modulus, Geff , and the yield strength, Y , can be
calculated as

Geff = G

[
1 − 15(1 − �)

7 − 5�
VV

]
Y = E(1 − 4VV) (24)
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Figure 5. Comparison of the free-surface velocity profile.

where VV is the void volume fraction. It is computed using the following formula:

VV = VV0 + �VVN + �VVG (25)

where VV0 is the initial void volume fraction; �VVN and �VVG are the increases in void
volume fraction due to nucleation and growth, respectively.

New voids are generated when the tensile pressure PS exceeds the nucleation threshold PN0
of the material. The pressure is calculated using the equation of motion [24]. On the other
hand, the existing voids grow if the tensile pressure exceeds the growth threshold PG0 of the
material. In the DFRACT model, the increases in nucleation and growth of voids, during a
single time step, �t , can be written as follows:

�VVN = 8	Ṅ0e(PS−PN0)/P1R3
n�t, �VVG = VV0(e

3/4[(PS−PG0)/�]�t − 1) (26)

where the material parameters of the DFRACT model for copper are

Ṅ0 = 2.8 × 1018 m−3/s, PN0 = 5.0 × 108 N/m2, P1 = 2.0 × 108 N/m2

Rn = 1.0 × 10−6 m, PG0 = 5.0 × 108 N/m2, � = 7.5 N s/m2

The free-surface velocity profile is shown in Figure 5. The spall thicknesses are 1.26 and
1.3 mm computed from the void volume fraction and the period of the oscillations in free-
surface velocity profile, respectively. Both of them match fairly well with the experimental
value, 1.15 mm, which is indicated in Reference [25].
4.2. A two-dimensional spallation simulation with the VG damage model

A two-dimensional FE-FCT model, shown in Figure 6, is used to study a problem similar to
the previous one. The dimensions are H1 = 0.0004 m, H2 = 0.0027 m, and L = 0.0012 m. The
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target plate (Copper)

flyer plate (Aluminum)

L

H1 v0

H2

sliding 
boundary

sliding 
boundary

free boundary

Figure 6. A flyer plate impacts a target plate (a two-dimensional model).

aluminium flyer has the impact velocity, v0 = 660 m/s. The material properties are given in
Table II. Plane strain is assumed here; 60 000 elements are used in the simulation.

The void-growth (VG) model [26] is used, and the presence of voids is expressed in terms of
the distension ratio 
. The porosity D is related to the distension ratio through the expression
D = 1 − 1/
. Then, the effective Young’s modulus can be written as Eeff = E(1 −D). The rate
of change of 
 for copper is given by


̇ =

⎧⎪⎨
⎪⎩

0 �P�0

− (
0 − 1)2/3

�

(
 − 1)1/3�P �P<0

(27)

where � is a material parameter and it is 1.0 N s/m2 for copper. 
0 provides the initial distension
to get the void growth start and it is set to be 1.0003 for the copper. �P is the driving stress
for void growth and it is given by

�P = P̄ − PS



ln

(




 − 1

)
(28)

where PS = 0.17 × 109 N/m2 is the threshold for void growth and P̄ is the average mean stress
in the porous region containing voids.

Figure 7 shows the evolutions of the free-surface velocity of the target. It is evident that
the FE-FCT method can give non-oscillatory results for the free-surface velocity profile during
spallation, unlike that of the FE method without viscosity. The configuration of the porosity
is shown in Figure 8 and the calculated spall thickness is 0.232 mm. This outcome is in good
agreement with the experimental result [25], 0.23 mm.

4.3. A plate with a central hole undergoing explosion

We consider a copper plate with a central hole whose radius is 0.00025 m. The plate undergoes
explosion, as shown in Figure 9. Only one quarter of the plate is modelled with L = 0.005 m.
The structured mesh (quadrilateral mesh) is generated for the problem. An implicit function is
used to describe the boundary along the hole. One can see that the boundary cuts the elements,
which are crossed by the boundary, into several subelements for integration. An example of this
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Figure 7. Free-surface velocity profiles.

Figure 8. Configuration of the porosity.

cutting and crossing can be found in Figure 10. A velocity pulse, described by an exponential
function here, is used to model the explosion loaded along the inner cycle of the hole. It is
expressed as

v = v0e−�t (29)

where v0 = 1000.0 m/s and � = 0.15e7 s−1.
The material properties of copper can be obtained from Table II. Once the explosion occurs,

cylindrical waves will propagate in the plate as compressible stress waves. These waves will
be reflected by the free boundaries and become tensile stress waves. Figure 11 shows average
mean stress waves at t1 = 1.15 �s and t2 = 1.38 �s. At time of t1 = 1.15 �s, two sets of tensile
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Figure 9. A plate with a central hole under explosion.
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Figure 10. Structured mesh for the plate with a hole.
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Figure 11. Evolution of stress waves by the FE-FCT method: (a) t1 = 1.15 �s; and (b) t2 = 1.38 �s.

Figure 12. Evolution of stress waves by the FE method: (a) t1 = 1.15 �s; and (b) t2 = 1.38 �s.

stress waves occur after the wave reflections, and they interact with each other as shown in
Figure 11(b). The evolution of stress waves for finite element simulation is shown in Figure 12.
It is difficult to distinguish waves due to the fluctuations, especially when the wave interaction
occurs. It is evident that the FE-FCT method can give accurate examples for shock wave
propagations and interactions.

We use the VG model to describe the evolution of nucleation and growth of voids in this
example. Figure 13 shows the evolution of the porosity. Once the reflected tensile stress waves
interact with each other, the accumulated magnitude of the tensile stresses will result in void
nucleation and growth. Then, the phenomenon of radial fracture can be observed as shown in
Figure 13.
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Figure 13. Evolution of porosity: (a) t1 = 1.5 �s; and (b) t2 = 1.7 �s.

5. CONCLUSIONS

Understanding shock wave propagation and interaction is key to spallation studies. Some nu-
merical methods use artificial viscosity to eliminate the oscillations behind shock wave fronts.
However, it smears the shock wave fronts and dissipates system energy. The incorporation of
the flux-corrected transport (FCT) algorithm in Lagrangian finite element (FE) methods has
significant potential due to the great versatility of finite element methods. Since only nodal
velocities are updated through the time integration of discrete equations at the transport stage,
the FCT algorithm corrects only nodal velocities, i.e. nodal momenta, in the proposed FE-FCT
method. In multi-dimensional shock wave propagation problems, each component of nodal ve-
locities can be corrected separately along the corresponding grid lines if structured meshes are
constructed. The increment of CPU time due to the FCT algorithm is not a big issue, espe-
cially in multidimensional problems, since the one-dimensional FCT algorithm is employed.
Such implementation of the one-dimensional FCT algorithm is simple and has been shown
to be efficient for the accurate description of the shock wave propagation. However, the FCT
approach used in this paper requires structured meshes. An implicit function is introduced to
describe the arbitrary boundaries of objects. Therefore, the proposed FE-FCT method has a
great deal of potential to solve multidimensional wave propagation and interaction problems. A
one-dimensional example showed that the FE-FCT method predicts better spallation phenomena
and spall thicknesses than the finite element method with or without artificial viscosity. We
also studied several one- and two-dimensional examples to show that the results of the FE-FCT
method are in good agreements with experimental results.
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