Cardiovascular Biomechanics

Image of Cardiovascular Biomechanics

Research in fluid cardiovascular biomechanics includes the examination of blood vessel reactivity and the development of atherosclerosis; the creation of computational fluid-dynamic and finite-element modeling of blood vessels (reconstructed from intravascular ultrasound imaging) to understand the development of lesions in animal models in order to relate fluid mechanical stresses and vascular material property alterations with lesion growth; and the application of fluid mechanics to coronary and carotid arteries with stenosis (reconstructed from intravascular and angiographic imaging) to understand mechanical valve closure dynamics and its relationship to thrombus formation and valve cavitation.

Research in solid cardiovascular biomechanics includes the biomechanical study of abdominal aortic aneurysms and cerebral aneurysms to better understand the pathogenesis of these diseases in order to diagnose rupture risk; in vitro development of aneurysms using elastase treatment; mechanical testing and constitutive modeling of biologic soft tissues; the biomechanical study of endovascular surgery and vascular graft design; finite element method (FEM); three-dimensional surface smoothing; and adaptive mesh refinement and analysis.

Associated Faculty: K.B. ChandranM.L. Raghavan, and Sarah C. Vigmostad