Elkins Awarded Spriestersbach Prize

Friday, August 31, 2012
Jacob Elkins, Recipient of Spriestersbach Prize

 

Story by John Riehl Writer/Editor, University of Iowa Graduate College

For two years, Jacob Elkins worked as a surgical technician at the Reno (Nev.) Veterans Hospital. He witnessed many hip and knee replacement surgeries and quickly learned that these implants can fail.

“When they fail, it’s horrible for the patients,” Elkins says. “Sometimes, they need multiple revision surgeries, increasing the risk of vascular injury, neurological injury, infection, and even limb loss.”

Motivated to make a difference, Elkins enrolled in the University of Iowa’s M.D./Ph.D. Program in Biomedical Engineering in 2005 and developed the first computational model that simulates the hip dislocation process as it actually occurs in the human body. It took Elkins a full year and a half to develop the model, which became the centerpiece of his doctoral dissertation.  Elkin’s research has garnered interest in his field, resulting in eight published/accepted papers and thirty-five conference presentations.

Based on his excellence in doctoral research, Elkins, who satisfied his Ph.D. requirements in January 2012, the Graduate College has awarded him the prestigious D.C. Spriestersbach Dissertation Prize in mathematics/physical sciences/engineering.

“This prize validates the hard work, and I am proud of it,” says Elkins, who will complete his M.D. in May 2013. “To be recognized for this research motivates me to do it better.”

The Spriestersbach Prize is named for Duane C. Spriestersbach, who served as Graduate College dean from 1965 to 1989. When the prize was founded over 30 years ago, Spriestersbach hoped it would “serve as tangible evidence—as ‘gold standards’—of the outstanding work of which graduate students are capable and to which all others should aspire.”

Winners of the Spriestersbach Prize are the UI's nominees for the Council of Graduate Schools (CGS)/University Microfilms International (UMI) Distinguished Dissertation Award. Iowa has had five national winners, more than any public institution. Twelve more Iowa nominees have been finalists in the national competition.

Elkins’ dissertation, “Biomechanics of Failure Modalities in Total Hip Arthroplasty,”details his research on the failure of total hip implants due to impingement and/or dislocation

“Jake’s dissertation research has broken new ground in the area of computational biomechanics and finite-element modeling as applied to orthopaedics,” says Joseph Reinhardt, professor of biomedical engineering and member of Elkins’ dissertation review committee. “His dissertation will have a lasting impact on how medical implants are designed and how we treat patients with orthopaedic disorders.”

Formulating a model of normal hip function

The first portion of Elkins’ thesis outlines the overall model formulation, with particular emphasis on the hip capsule—a thick jacket of ligamentous tissue that surrounds the joint.

“He kept getting slapped down by the algorithm for the model and he kept bouncing back up,” says Thomas Brown, Richard and Janice Johnston Chair of Orthopaedic Biomechanics and Elkins’ dissertation advisor. “I really love the guy’s perseverance. He is a warrior. His capsule model isn’t something for the faint-hearted. From a biomechanics standpoint, it’s been so difficult to quantify.”

Problems with metal hip implants

The second section focuses on implant problems that occur due to impingement, which is caused by a lack of room or clearance between the neck of the femur and the rim of the hip socket.

This work has several potential applications, including solutions for impingement problems that occur in metal-on-metal implant designs, currently a pressing clinical concern due to large numbers of early failures of this class of implants.

“I started looking at metal-on-metal, because these things were failing at astronomical rates, but they shouldn’t have,” Elkins says. “From an engineering perspective, metal-on-metal bearings are superior to anything else out there, but when you put them in a patient, they weren’t working. The bottom line is the actual design of the implant was sub-optimal. People designing the implant didn’t look at various factors that we’re able to explore readily with this model.”

One factor implicated in implant failure is edge-loading, which occurs when too much pressure is placed between the edge of the metal cup and the ball. Such pressure dramatically increases the rate at which the replacement joint deteriorates. The tiny metal particles that wear off the joint through edge-loading can lead to loosening in the joint. The particles can also inflame surrounding flesh and enter the bloodstream, causing illness or injuries elsewhere in the body.

Problems with ceramic hip implants

Next, Elkins’ dissertation describes fractures that can occur in ceramic total hip implant designs, which serve as an alternate to metal-on-polyethylene and metal-on-metal bearings. Ceramic implant fractures are rare, but when they happen the result is disastrous. Elkins approaches this issue computationally, since many ceramic fractures occur due to impingement.

“My favorite part of his dissertation is the fracture work,” Brown says. “To simulate that computationally, which is very desirable from a design standpoint, was a bear. Jake picked that up beautifully.”

Award-winning research

For his innovative research, Elkins received the prestigious William H. Harris, MD Award from the Orthopaedic Research Society in 2011. This award, sponsored by the Harris Fellows Club, honors an individual based on the quality and scientific merit of a paper submitted to members of the Orthopaedic Research Society Special Projects Committee.

Elkins also was honored by his faculty mentor.

When Brown received the Orthopaedic Research and Education Foundation’s Clinical Research Award in 2012, he recognized Elkins as a co-author on the winning project, “Impingement and Dislocation in Total Hip Arthroplasty: Mechanisms and Consequences.”

“We’ve done a lot of research in this lab through the years,” Brown says. “On Jake’s watch, the research was beautifully brought to closure. It was shear hard work; he put in huge hours.”