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Variational methods for evaluating the design of mechanisms were first introduced by this
group in the form of mathematical formulations generally applicable to open- and closed-loop
mechanisms.  This method is herein extended and demonstrated to the design of mechanical
parts in the context of automatic parametrization of the geometry.  The formulation is based on
the development of constraint equations that govern the relation between geometry in a
mechanical part as dictated by a designer.  Instead of the tedious method of specifying
mathematical relations between any two geometries of the part, it is proposed to use the notion
of kinematic relations inherent in the formulation relating the connectivity between joints and
links.  Cut-joint constraints are introduced, kinematic joints in the formulation are combined,
their variations evaluated, and a Jacobian is determined.  Constraint violations are then
compensated to compute an assembled mechanism, hence redesigning the part.  It is shown that
this kinematically-driven formulation is broadly applicable to 2D and 3D models.  The method
and algorithm are illustrated through a number of examples.

Keywords:  Cut-joint kinematic constraints, automatic computer-aided design, design
propagation, automatic parametrization, constraint management.

1.  INTRODUCTION
Automated design methods in computer aided design pertaining to parametrization and
constraint definitions have met with great success in recent years.  Commercial Computer
Aided Design (CAD) computer code has provided versatile venues for end-users to automate
the design process.  Despite recent advances, the sophistication of these formulations remains
at an early stage of development. The goal of this work is to introduce a new numerical method
for automated parametrization of mechanical part geometry using the inherent kinematic
properties of mechanisms.  As a result, a method for automated CAD is developed.

Mechanical parts in an assembly modeled in a CAD system undergo many changes before
reaching the optimal design state.  The field of computer-aided design has seen a revolutionary
advancement by the advent of parametric technology.  Using this technology, many
commercial CAD systems have simplified the iterative design process. In most cases,
parametric technology has been implemented characterized by sets of rules associating
dimensions by simple equations.  For example, the length of two links d1  and d2  may be
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related parametrically by one equation as d d t1 2= , where t is the parameter.  This indicates that
a change in the length of link 2 will automatically change the length of link 1.  Similarly, a
change in any geometry causes a change in another geometric property.   The goal is to
automate the product development process within the mechanical CAD environment.

Computer code that implements the iterative concept of design and that automatically alters
designs is reported by many researchers (Imamura 1994, Burke et al. 1994, and Cutkosky and
Tenenbaum 1990).  This type of software facilitates constraint-based modeling and in many
cases provides inferencing via constraint propagation.  Some methods specify a parametric
dependency between different parts.  A design change in the geometry of a part propagates
through the complete design. Other efforts at CAD/CAM automation include reasoning
schemes that use topological relationships between features (McMahon et al. 1997).

Examples of software that has recently appeared to support automated mechanical design
include that developed by Bowen and Bahler (1992) using constraint networks, Fohn, et al.
(1994) using constraint systems shells, and Kolb and Bailey (1993) using a constraint-based
object modeling method.   Other methods that have dealt with constraint management were
addressed by Serrano and Gossard (1988).  Works addressing this subject are numerous and
cover a variety of disciplines including Aritificial Intelligence, Computer Aided Design, and
Manufacturing.  An important contribution to this field was made by Kott et al. (1992) where a
configuration technique that is well suited for configuring ’decomposable’ artifacts of a
mechanical part with reasonably well defined structure and constraints was presented and
demonstrated for an automotive component.  Algorithms that provide the user with flexibility
in choice of design specifications of constraint management were introduced by Agrawal et al.
(1993), where the code was demonstrated for a number of mechanical parts.

Other programs dealing with constraint management and structural decomposition include the
program called MEET (Steinberg and Lanagarana 1996). A method applied to the
manufacturing industry using feature-based generative design-by-constraints was applied by
Jaques et al. (1991), in which constraints are manipulated.  More recent efforts to automate the
design process in manufacturing were demonstrated by Abdel-Malek and Maropis ( 1998).
In this paper, design propagations due to a change in geometric parameters are considered
throughout the mechanical part.  The derivation of basic constraints in the context of automatic
computer aided design was first introduced by Zou et al. (1996).  It is based on a computational
method for studying the kinematics of mechanical systems as first introduced in by Haug
(1989). Basic constraints were first developed for the study of variational propagations in
mechanism assembly design (Zou et al. 1998).  In this paper, we generalize the formulation,
present a robust method for computing a solution using the modified moore-penrose pseudo
inverse, and demonstrate the work in the context of an automated CAD interface. Indeed,
several spatial examples are treated and illustrated.  The emphasis on masking this program (in
an automated mode) from the CAD user is also addressed.  Limitations of this work that are
currently under development are also addressed.

It was shown earlier that constraints are derived that represent the connection between any two
links and were called basic constraints (Zou et al. 1996).  A cut-joint kinematic constraint
formulation used in multibody dynamic analysis was implemented in representing the geometry
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of parts.  Two cases were delineated and a simple example was demonstrated.  It was shown
that a mechanical part can be modeled as a simple mechanism comprising joints and links.  A
dimension was replaced by a specific link, while a change in length was modeled as a slider-
crank pair.  A change in the mechanical part was propagated through the mechanism and a new
configuration was computed.  The extension of this work to the automatic parametrization of
3D mechanical part geometry and the combination of joints in the analysis are presented in this
paper.  Combination of joints in the graph topology analysis leads to a simplified calculation
(and faster computational time).   The analysis in this paper is illustrated for three-dimensional
geometrical parts that are converted to spatial mechanisms with a multiple of kinematic pairs.

General conventions used throughout the development of the method are first introduced in
Section 2.  Graph tree representation will be used to model the system using a spanning tree
and a cut-joint constraint.  A set of equations will be developed while maintaining vector
quantities representing link length and orientation as variables, namely the Euler angles and the
body-position vector (Section 3).  These equations will then be linearized but having a non-
square Jacobian.  The Moore-Penrose pseudo inverse will be used to compute an assembled
configuration using the kinematically driven formulation, hence automatically redesigning the
mechanism subject to the specified change (Section 4).  The new mechanism will then be
converted back to a mechanical part, consequently providing a new design.  Three examples
will be illustrated in the context of automated computer-aided engineering for parametrization
of geometric constraints.

2.  CONVENTIONS
The following conventions will be used throughout this formulation.
(1) Mechanical parts will be represented by a number of joints and links.  The goal is to relate

geometric dimensions by imposing constraints inherent in the mathematics of kinematic
pairs.  For example, consider the mechanical part shown in Fig. 1a. By choosing the
appropriate types of joints, the designer allows for the distortion of the part in a particular
manner.  For example, two sliding joints (J  and J32 ) , a revolute joint J4 , and spherical
joints (J ,J J J  and J5 6 7 81 , , , )  are introduced as shown in Fig. 1b.  The kinematic model of the
part is shown in Fig. 1c where the proposed links are numbered 0 through 6 and the
mechanical part has been modeled as a mechanism.
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Fig. 1 (a) Mechanical part  (b) Modeling the part as joints and links (c) The mechanism
representation of the part
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(2) A mechanism will be transformed into a graph. Each body is defined as a node and a
kinematic joint is defined as an edge.  For example, the scissors jack shown in Fig. 2a will
be transformed into a graph representation as shown in Fig. 2b.

(3) A Graph representation will be cut to produce a tree structure. For example, the graph of
Fig. 2b is cut as shown in Fig. 2c to obtain a tree.
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Fig. 2  (a) Scissors jack  (b) A graph representation (c) Cutting joints to form a tree

(3) Vector notation used throughout this formulation is introduced in this section.  In order to
facilitate the forthcoming discussion, Fig. 3 illustrates the nomenclature used throughout.

Define the vectors a i  and a j  as nonzero vectors fixed in the bodies i and j, respectively.

Define the vectors ri  and r j  as the global position vectors extending from the origin of the

global reference frame to the origin of the body reference frame.

′Oi
′Oj

s ji

sij

r j

ri

′′Oij ′′Oji

dij

a i a j

Fig. 3  Identification of coordinate systems
Define the vectors sij  and s ji  as the joint-attachment vectors in the body reference frame,

where these vectors will be maintained as variables such that their variations will be
automatically computed.

3.  PROBLEM FORMULATION
In this section, the results obtained by Zou et al. (1997) are first briefly reviewed.  The
expansion of the formulation is then introduced in terms of the representation of 3D parts and
mechanisms.   Throughout this derivation, the position vector embedded in each link and its
orientation matrix are maintained as variables.  The goal is to obtain linearized equation
characterizing the assembly (i.e., mechanical part)

3.1 Review of Constraints (Zou, et al. 1996)
A spherical joint is a type of constraint that requires a pair of points on two bodies to coincide.
A necessary and sufficient condition for ′′Oij  and ′′Oji , to coincide is that ijd = 0 ; i.e.,

F
s

ij ji j ji i ijO O( , )′′ ′′ = + − − =r s r s 0 (1)
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The vectors  ijs   and jis   can be written as ijs = iA ij
’s  and jis = jA ji

’s .  The variation of the joint
position vectors can be written as

  δ δ δs s A sij ij i i ij= − + ′~
p (2)

Taking the variation of Eq. (1) and substituting for δsij  and δs ji yields

δ δ δ δ δ δ δF p p
s

j i ji j j ji ij i i ji= − − + ′ + − ′r r s A s s A s~ ~  (3)

where the matrices A i  and A j  represent the direction cosine matrices from link reference

frame ′ ′ ′x y z  to the global reference frame xyz ;  the symbol (~) called tilde, is used to denote a
skew-symmetric matrix generated by its corresponding vector (e.g., ~a  is the skew symmetric

matrix generated from the vector a = a a ax y z

T
); the matrix π  can be generated from the

elements of p =δAAT .

A distance constraint requires a specified distance between a pair of points.  A necessary and
sufficient condition that the distance between ′′Oij  and ′′Oji , shown in Fig. 1, be equal to l ≠ 0  is

that) is formulated as
F

D
ij ij ij

T
ijO O( , , )′′ ′′ = − =l ld d 02 (4)

and its variation is

δ δ δ δ δ δδ δF p p
D

ij
T

ij ij
T

j i ji j j ji ij i i ij= = − − + ′ + − ′2 2d d d r r s sA s A s~ ~ (5)

where the variation of dij  is

δ δ δ δ δ δ δd r r s A s s A sij j i ji j j ji ij i i ij= − − + ′ + − ′~ ~
p p (6)

Combination of joints is performed in the analysis to simplify computations.  Consider, for
example, the translational and distance constraints:  If the two joints are connected to each
other in one branch, then they can be combined in the analysis and will be denoted by T-D.
The constraint equation that characterizes this joint is

F
T D

ij
T

ij T D
−

−= −I I l
2 (7)

where I d hij ij ijq= − 3  (8)

where h A Cij i ij

T= 0 0 1 (9)

Substituting Eq. (9) into (8) and subsequently into (7) and using the identities derived, the
variation of FT D−  is

δ δ δ δ δ δ δ δ δ δF p p x
T D

ij
T

j j ji ji j i i ij ij i ij ij ij T D T Dq q q−
− −= + ′ − − − ′ + + + − −2 23 3 3I r A s s r A s s h h h~ ~ ~ ~3 8 l l

 ------(10)
3.2  Jacobian Matrices
The Jacobian matrix of a composite T-D joint in Cartesian space can be written as

F F F
p$

~
z r

I r

0 Ij j j

T D j− =
−�

! 
"
$# (11)

where the symbol F
$z j

 denotes the Jacobian matrix of the constraint function F  with respect to

the coordinate space of $z  (i.e., [ $ ]∂ ∂Fi jz ), and can be written as

F
$

(~ ~ )z I I s r
j

T D
ij
T

ij
T

ji j
− = − +2 2 (12)

The Jacobian matrix is
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Fq
T D

ij
T

ij3
2− = − I h (13)

3.3  Velocity Transformation Matrices of Combined Joints
A Spherical-Translational (denoted by S-T) joint has four relative degrees of freedom

q qS T

T
q− = 1 2 , three for the spherical joint and one for the translational joint.  Three relative

rotational coordinates of the spherical joint can be expressed using Euler parameters to avoid
orientation-associated singularities.  The Euler parameters are denoted by e e e e

0 1 2 3
, , ,  and  such

that the Euler parameter vector is defined by

p1 = e e e e0 1 2 3

T
(14)

Since a translational joint does not have a rotational degree of freedom, the transformation
matrix ij

"A  of the S-T joint is simply the same as that of a spherical joint, thus

′′ = ′′ =A A E Gij sph j j
T (15)

where E j  and G j  are the Euler parameters semi-rotation matrices defined by Haug (1989) as

E j = −e
j
, ˜ e 

j
+ e

j0
I[ ]=

−e
1

e
0

−e
3

e
2

−e
2

e
3

e
0

−e
1

−e
3

−e
2

e
1

e
0

 

 

 
 
 

 

 

 
 
 

(16)

and
G j = −e
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(17)

and the transformation matrix Cij  can be represented as

Cij = E jG j
T

(18)
The velocity transformation matrix B j  can be expressed as

B B Bj
S T

sph tran
−

×
=

6 5
(19)

where B sph  is the velocity transformation for the spherical joint

B
r

I
A C E

r

I
A C Esph

j
i ij j

j
S T j=

�
! 

"
$# =

�
! 

"
$# − ×

~ ~
2 21 12 6 4

(20)

and B tran  is the velocity transformation for the translational joint

B g 0tran ij

T
= (21)

Velocity transformation matrices are  used to represent the variation of one body with respect
to another.  Assume bodies i and j are connected by two joints; after joint 1 is cut, body i is the
inboard body of body j.  In order to obtain a representation of one vector in terms of another in
state vector form,  and since the variation δ δ δ δr r s dj i ij ij= + + , then substitute for δdij  and δsij

and use the relationship ~ ~ab ba= −  yields

δ δ δ δ δ δ
δ
δ

δr r s A s d d
d

q
qj i i ij i ij i ij ij ij

ij

j
j= + + ′ + − ′ +~ ~ ~

p p x (22)

Collecting terms and simplifying yields
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δ δ δ δ δ
δ
δ

δr r r r A s d
d

q
qj i i j i i ij ij ij

ij

j
j= + − + ′ − ′ +~ ~

p x3 8  (23)

Adding a common term ( ~rj jδp ) to both sides of Eq. (23), and using the above identities yields

δ δ δ δ δ δ
δ
δ

δ δr r r r A s d
d

q
r H q rj j j i i i i ij ij ij

ij

j
j j j j ij+ = + + ′ − ′ + +

�
��

�
�� + ′~ ~ ~ ~ ~

p p x x  (24)

where H A qj i j( , )  is a transformation matrix that depends on the orientation of body i and on

the relative coordinates δq j , which is defined for each type of joint such that

δ δp ij j i j j= H A q q( , ) .  The virtual rotation is expressed by δ δ δ δp p xj i ij j j= + + H q .

Equation (24) and the virtual rotation are combined in matrix form as
δ δ

δ
δ δ

δ
δ δ δ

r r r r A

0
s

d q rH

H
q

r d

I
j j j

j

i i i

i

i
ij

ij j i j

j
j

j ij
ij

+�
! 

"
$#

=
+�

! 
"
$# +

�
! 

"
$# ′ +

∂ ∂ +�
! 

"
$#

+
−�

! 
"
$#

~ ~ ( ) ~ ~ ~
p

p

p

p

x (25)

In state-vector notation, Eq. (25) is written as
δ δ δ δ δ$ $z z B q M s Nj i j j i ij j ij= + + ′ + ′x  (26)

where M A 0i i

T=       and    N r d Ij j ij

T
= −~ ~

(28)

This state representation characterized by Eq. (26) will be used in obtaining a linear set of
equations that can automatically be solved for an appropriate configuration.

4.  COMPUTING A SOLUTION FROM A NON-SQUARE JACOBIAN
The general case of the variation of the constraint Φ  in linearized form can be written as

δ δ δ δ δ δF F F F x F F xx= + ′ + + +
$ $ $z z z sB q M s N s

j j j ij ijj j i ij j ij ij ij (29)

or simply represented by
F Fq qδ = −

(30)
When a given initial estimate does not satisfy the constraint equations F , the linearized
variational constraints (Eq. 27) are simultaneously solved to obtain an admissible solution.
Note that the number of variables is more than the number of constraints.  Since the Jacobian of
F( )q  is not square, the problem of obtaining an assembled configuration can be solved using
the Moore-Penrose pseudo inverse (Abdel-Malek and Yeh 1997).  Starting with an initial guess
q1 , the new generalized coordinates are calculated by evaluating

∆q q= −F F
*( ) (31)

where Φq
*  is the Moore-Penrose pseudo inverse of the Jacobian Φq = ∂ ∂Φ i jq , defined by

Φ Φ Φ Φq q q q
* =

−T T3 8 1
(32)

The new set of generalized coordinates is iteratively computed as q q q( ) ( ) ( )i i i+ = +1 ∆  until the

constraint function F < ε  is satisfied.  The method converges to a solution q∗  within a few

iterations because of its quadratic rate of convergence.  This method will yield a solution set q
that is closest to the original configuration but with changed dimensions.  The final solution
characterizes an assembled mechanism that satisfies all kinematic relations imposed by the
designer.  This new mechanism can now be converted back to a mechanical part.  The overall
method is illustrated in Fig. 4.
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Fig. 4  Block diagram of the overall methodology
5.  EXAMPLE I
Consider the mechanical part shown in Fig. 5a and its cross section shown in Fig. 5b.  Due to
mating part requirements, an increase in the slot radius r to r dr+  is introduced.  It required,
however, to maintain the distance d1  as constant due to assembly requirements but changes in
the dimension d2  and the angle β  of the slot are allowed.   Although this is a 3D part, the
resulting problem is planar as the mechanism is planar.

r
d1

d2

β

Fig. 5 (a) A mechanical part and its cross section (b) A cross section of the part

To kinematically model this mechanical part, five revolute joints J J J J J1 2 3 5 6, , , ,  and , and two
prismatic joints J J4 7 and  are introduced as shown in Fig. 6.  The prismatic joint mandates a
horizontal movement (change) of the dimension d2  while maintaining the dimension d1 .  The
revolute joint at J1  is fixed to the ground (i.e., does not translate).  Links 0 1 5, ,2,3,4,  and  are
introduced and the connectivity is shown where Link 0 is ground.  The graph representation of
the kinematic model is shown in Fig. 7a.
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Fig. 6.  Kinematic modeling of the mechanical part
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Fig. 7. (a) Graph representation of the mechanical part (b) after cutting

Due to the design change, a variation is to occur in the vector of Euler parameters p01

associated with the transformation matrix C01 . To form a spanning tree, the joint connecting
links 1 and 2 and that connecting link 4 and 5 are cut, where the bodies do not remain
connected after cutting the joint as shown in Fig. 7b. Note that both sides are symmetric. Since
a joint was cut, a constraint function is introduced such that

F
r = + − − =r s s r 02 21 12 1 (33)

where s12  is the joint-position vector in the reference frame of link 1; and s21  is the joint-
position vector in the reference frame of link 2.  The Jacobian matrix of the cut-joint in the
reference frame of link 1, written in Cartesian coordinate space is

F
$

~ ~
z 2I r s

1 1 1
r = − + (34)

In order to transform the Jacobian matrix from Cartesian coordinate space to joint coordinate
space, the velocity transformation matrices are used such that

F F F Fq z z zB B Br r
rev

r
slid

r
rev=

$ $ $1 2 2 (35)

where the velocity transformation matrix of the revolute joint is B rh hrev = ~
1 01 01

T
, and

h A C01 0 01 0 0 1= T
 is the unit vector along the rotational joint axis ′′z01  in the global frame.

Using the linearized equations of Section 4, the iterative algorithm is employed until constraint
violations are satisfied, where p03  is the vector of Euler parameters associated with C03

(transformation matrix from translational joint coordinates to ground reference frame); p32  is
the vector of Euler parameters associated with C32 .  The new computed configuration of the
mechanism is shown in Fig. 8a. The original part is shown in Fig. 8b and the updated geometry
in Fig. 8c.
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Fig. 8.  (a) Kinematic change in the mechanism (b) the original part (c) the new computed part

6.  EXAMPLE II
Consider the mechanical part shown in Fig. 9a.  In order to compensate for a change in the
dimensions of a mating part (not shown), the dimension n is required to change to n n+ ∂ .
However, a constraint is introduced such that to keep the distance d in Fig. 9a unchanged.

The designer selects the type of joints and their locations.  Joints J J J2 4 6, ,  and  are
translational joints, J J3 5 and  are distance joints, and J1  is a spherical joint. The distance joint
followed by a translational joint, in this case, specifies a minimum distance that must be
maintained but also allows for deformation in the part allowing the distance to be kept. The
system is carefully chosen to allow for distortions in certain geometric parameters.  The model
comprises two composite Translational-Distance joints (T-D) and one composite Spherical-
Translational (S-T) joint as shown in Fig. 9b.

d

J1

J2

J3
J4

J5

J6
DTn

T
D

T

S

Fig. 9  (a) Mechanical part (b) Kinematic model of the part
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To form a spanning tree structure, the two composite T-D joints are cut.  The graph
representation of the system before cutting joints is shown in Fig. 10a and the tree after cutting
is shown in Fig. 10b.

Ground

T-D T-DS-T

Body 1

Ground

S-T

Body 1

cut cut

Fig. 10  (a) Graph representation of the kinematic model (b) Cutting joints

Since the S-T joint connects the two entities (ground and body) with a spherical joint and a
translational joint, define the vector 12S −T

’s  as the S-T joint-attachment vector in ground reference
frame, and let lT D−  be the constraint distance.

Using the proposed formulation, the linear systems of equations in terms of the Jacobians for
this mechanism are written as

F

F F

F

F

q

q

0 q
S T

T D

S T

T D
q
T D

S T
S T

T Dq
−

−

−

− −
−

−

−

�
!  

"
$##
�
! 

"
$# =

−
−

�
! 

"
$#3 3

δ
δ

(36)

where FqS T

S T

−

−   and FqS T

T D

−

− are the Jacobian matrices in joint coordinate space, and are transformed

from the Cartesian space F
$z j

 by using the velocity transformation matrix B as

F Fq z B
S T j

S T S T
j
S T

−

− − −=
$

(37)

F Fq z B
S T j

T D T D
j
T D

−

− − −=
$

(38)

Estimates of transformation matrices Cij  (Joint coordinate to body reference frame) are

C
12 S T− =

−�

!
   

"

$
###

0 1 0

1 0 0

0 0 1         

C
12 T D− =

�

!
   

"

$
###

0 0 1

1 0 0

0 1 0                

C
21T D− =

−�

!
   

"

$
###

0 1 0

1 0 0

0 0 1

and corresponding Euler parameters Pij  are computed as P
12S T-

= 0 707107 0 0 0 707107. .
T

P
12T D-

= 05 05 05 05. . . .
T
, and estimates of the generalized coordinates are

q1 1 2 0 0 1 2= -

T
, q2 0 425= − . , and q3 0 305= − . .

(1) The equation for allowing joint variables to automatically be computed must be determined.
For a given design variation, the generalized coordinates q  are allowed to vary and the
linear system of equations is

F FF
$z B q

2 32 3
S T

S T q q−
− + = −δ δ (39)

Equation (39) is solved for the joint variables using the iterative algorithm.  This method
yields a new configuration of the mechanism with only varying the generalized coordinates.
This is the most direct method and yields results that are easily perceived by the designer
prior to modeling.  The part is updated accordingly. Results of performing this method are
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entered into column 3 of Table 1.  Note that the initial assembly of the mechanism is
entered in column 2 of Table 1. Also note that shaded regions indicate invariant constants
while bold font indicates changed design parameters

(2) For a given design variation, only joint-attachment vectors ′sij  are allowed to change. The

resulting linear equation is
F F F F

$z s sM s s s
2 12 211 12 12 21δ δ δ′ ′ ′− ′ − ′ −+ + = −

− −S T T D T DT D T D
(40)

Location of the new coordinates of each joint is changed so as to redesign the mechanism.

(3) For a given design variation, joint-attachment vectors and the length lT D−  are allowed to
change.  In this case, the variational equation is

F F F F F
$z s sM s s s

2 12 211 12 12 21δ δ δ δ′ ′ ′− ′ − ′ −+ + + = −
− −S T T D T D lT D T D

l (41)

(4) If a complete redesign is sought, and the joint attachment vectors ′sij  and generalized

coordinates q are allowed to change, the equation to be solved is
F F F F FF

$ $z z s sB Mq s s s
2 3 2 12 212 3 1 12 12 21

S T
S T q S T T D T Dq

T D T D

−
− − ′ − ′ −+ ′ ′ ′+ + + = −

− −
δ δ δ δ δ    (42)

Keeping the joint attachment vectors sij
’
 and transformation matrices Cij  constant, the Newton-

Raphson iteration method is used to update the generalized coordinates q.  The algorithm
converges within 2 iterations and the set of new generalized coordinates are computed and
entered into column 3 of Table 1.   Upon obtaining an assembled configuration (an admissible
solution that satisfies the constraints), a second converter must be used to convert the
mechanism to an updated mechanical part.  For example, an admissible solution is shown in
Fig. 11a, and the mechanical part in Fig. 11b.  Other computed parts are shown in Fig. 12.
Table 1  Simulation results due to a change in 12S −T

’s
1

Variables
2

initial assembly
3
q

4

sij
’

5

sij
’

,lR −S , lT −D

6

sij
’

,q
q1

0.6980

−0.0320

−0.0529

−0.7137

 

 
 
 

 

 
 
 

0.6870

0..0784

−0.0912

−0.7166

 

 
 
 

 

 
 
 

0.6995

0..0199

−0.0666

−0.7112

 

 
 
 

 

 
 
 

q2
-0.4337 -0.3638 -0.4061

q3
0.2760 0.2349 0.2799

12S −T
’s 0.5011

1.1162

0.1998

 
  

 
  

0.5

1.0
0

 
  

 
  

0.5

1.0
0

 
  

 
  

0.5

1.0
0

 
  

 
  

0.5

1.0
0

 
  

 
  

21T− D
’s 0

1.2675

−0.3748

 
  

 
  

0.0298

1.2597

−0.3931

 
  

 
  

0.0210

1.2620

−0.3876

 
  

 
  

0.0039

1.2663

−0.3772

 
  

 
  

21T− D
’s 0.07

0.155

−0.186

 
  

 
  

0.0424

0.1627

−0.1645

 
  

 
  

0.0506

0.1604

−0.1709

 
  

 
  

0.0665

0.1561

−0.1831

 
  

 
  

l
T −D

0.3742 0.3955

P
12S−T

0.7071

0

0

0.7071
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P
12T−D

0.5

0.5

0.5

0.5

 

 
 
 

 

 
 
 

F   norm 0.000672544 0.00015806 0.000348392 0.000564039 1.85401e-05

Iterations 2 3 3 2 3

J1

J2

J3

J4

J5

J6

Fig. 11 (a) The mechanism after computing an assembled configuration (b) The equivalent
redesigned part

Fig. 12 Other redesigned parts
7.  EXAMPLE III
To further illustrate, consider the mechanical part shown in Fig. 13a.  The geometry of this part
is represented by the mechanism shown in Fig. 13b, where one revolute joint, one spherical
joint, one universal joint, and one prismatic joint have been introduced.  The setup is such that
the first and third links are subjected to torsion.

F
sph = + − − =r s s r 0

2 21 12 1
(43)
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Universal joint

Fig. 13 (a) A mechanical part (b) After conversion to a mechanism

The tree graph of this mechanism represents a pair of links that are disconnected after cutting a
joint.  For a given initial estimate that does not satisfy the constraint function F , the set of
linear equations is simultaneously solved for a correction δq k( ) .  The spherical joint is cut

(because of the number of degrees of freedom), and the Jacobian matrix F
$z
sph  in Cartesian space

can be transformed to joint space using velocity transformations as

F F F Fq z z zB B Bsph sph
rev

sph
trans

sph
uni=

$ $ $

| | (44)

where B rev is the transformation matrix for the revolute joint B
r h

hrev =
�
! 

"
$#

~
1 01

01

 and the axis is

h A C01 0 01 0 0 1= T
,  and Buni  is for the universal joint

Buni =
˜ r 

2
h

32
˜ r 

2
g

32

h
32

g
32

 

 
 

 

 
 (45)

where h A C32 3 32 0 0 1=

T
 and g A C A32 3 32 321 0 0 1= ′′ T

, where the rotation matrix is

′′ =
−�

!
   

"

$
###

A321( )

cos( ) sin( )

sin( ) cos( )q

q q

q q2

2 2

2 2

0

0

0 0 1 (46)

For the translational joint, the velocity transformation matrix is Btrans  defined as

B g 0trans

T= 03  and g A C01 0 03 0 0 1= T
, where

F
$

~ ~
z I r s

i

sph
= - +1 12 (47)

and F
$

~ ~
z I r s

j

sph
= - - +2 211 6 (48)

The initial estimates of the position and orientations of the ground are x=0, y=0, z=0, e1=0,
e2=0, and e3=0.  Initial estimates of joint attachment vectors in the body reference frame are
presented in Table 2.

TABLE 2
Joint Attachment vectors in Body Reference Frame Estimates

s’           x’               y’                  z’ s’           x’               y’                  z’
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01
’s           0                0                    0

12
’s           2                0                    0

21
’s           -2.828       0                     0

03
’s           0                3.8637          0

32
’s           0                0                    0

Transformation Matrices from Joint Coordinates to the Body Reference Frame are as follows.

C01 =
0 0 1

1 0 0

0 1 0

 

 

 
 
 

 

 

 
 
                  

C03 =
0 1 0

0 0 1

1 0 0

 

 

 
 
 

 

 

 
 
                  

C32 =
0 1 0

0 0 1

1 0 0

 

 

 
 
 

 

 

 
 
 

Estimates of generalized coordinates are q = −45 30 0 0o o o o T
.

For a given initial estimate, the iterative method is used until the constraint violations are
satisfied.  A linkage length or a transformation matrix from joint coordinate to body reference
frame may be changed.  Therefore, joint attachment vectors may be changed (e.g., 01

’s , the

revolute joint attachment vector in ground reference frame.)  Once the linkage length has been
changed, the constraint function is violated, and three options can be performed:
(1) The generalized coordinates q are changed such that

F F F F
$ $ $z z zB B B

1 1 4
2

3

sph
rev

sph
trans

sph
uniq q

q

q
δ δ

δ
δ

+ +

�
! 

"
$#=-2 2 (49)

(2) The linkage lengths ′s  are changed such that
F F F F F F

$

’
$

’
$

’ ’ ’
’ ’z z z s s

M s M s M s s s
1 01 03 32

12
12

21
210 0 3

sph sph sphδ δ δ δ δ+ + + + = −
2 2 (50)

where M0 =
A 0

0
 
  

 
               M3 =

A 3

0
 
  

 
  (51)

F
s12

’  and F
s21

’ are spherical constraints.

(3) The generalized coordinates q and linkage lengths s’  are changed such that

F F F F F
$ $

’
$ $ $

’
z z z z zB M s B B M s

1 1 01 031 0 4
2

3
0

sph
rev

sph sph
trans

sph
uni

sphq q
q

q
δ δ δ

δ
δ

δ+ + +
�
! 

"
$# +

2 2 2

            + + + = −F F F F
$

’ ’ ’
’ ’z s s

M s s s
2

sph
3 32

12
12

21
21

δ δ δ (52)

Initial estimates are provided for an assembled configuration.  The design change due to
adjusting the spherical joint attachment vector in crank reference frame 21

’s  from

−2 828 0 1.
T

 to −2 8 0 2 01. . .
T

 are illustrated in Fig. 14.
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Fig. 14 The updated part after changes in the geometry are computed

8.  CONCLUSIONS
A broadly applicable formulation for automating the parametrization and redesign of
mechanical part geometry was presented.  The iterative process typically associated with
mechanical design is reduced by the use of such kinematically driven automated methods.
Mathematical formulations based on earlier work are further expanded in this paper and are
demonstrated to the automated computer-aided design of 2D and 3D mechanical parts.  The
significance of this formulation is evidenced in that it characterizes an alternative efficient
method to the common parametric methods currently used.   The main difference is the inherent
kinematic formulation capable of computing admissible solutions very efficiently.

It was shown that mechanical parts represented in a CAD environment could be modeled into a
mechanism comprising joints and links.  It was shown that the deformation of the solid
sustained by introducing a design variation is computed using a kinematic model. It was also
shown that design changes through the mechanism are propagated such that an admissible
configuration is computed using an efficient iterative generalized inverse method.  The
emphasis on masking this formulation from the CAD user (in an automated mode) is
highlighted because of the long-term ramifications implied herein.  The use of the inherent
mechanism kinematics in modeling and providing solutions to the design assembly and
parametrization scheme are automated in nature and are the focus of current research to expand
this method to more complex shapes.

While the experimental computer code used to implement the algorithm is not refined, it has
nevertheless demonstrated a new type of automatic design well suited for geometric
parametrization of mechanical parts.
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