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Abstract

The method of consecutive revolving or extrusion of a geometric entity in a CAD system is typically used by a designer to represent
complex solids. While it is evident that consecutive sweeping is a very effective tool, it has been restricted by the associated difficult
mathematics in representing consecutive sweeps and in analyzing the resulting equations. The Denavit–Hartenberg (DH) method, first
introduced in 1955 in the field of kinematics to mathematically relate motion between two coordinate frames, provides an effective
formulation for characterizing the resulting solid model. Design variations imposed on sweep properties are easily propagated through
the formulation to update the solid. This paper illustrates the use of the DH formulation for multiple sweeps and demonstrates the method
through examples.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Solid modeling provides the most complete representa-
tion of an object whereby quantities such as mass, center of
gravity, and moments of inertia can readily be computed. A
number of different schemes have been used to represent
solids such as primitive instancing, cell decomposition,
sweep representations, constructive solid geometry (CSG),
and boundary representations (B-rep). Most of the times, a
combination of the above methods is used to generate
complex solids. The concept of sweeps as a tool to generate
solids is commonly used by designers but only for a mini-
mum number of sweep variables. Solid modeling is compu-
tationally expensive and efficient methods of model
construction are needed to reduce computational time.

A detailed review of major developments of solid model-
ing methods is presented by Hoffman [1]. Hoffman states:

The mathematics of sweeping is more delicate and
demanding than it might seem at first glance.
…Usually, there is no closed-form mathematical
description of the surface bounding the swept volume.

However, recent work [2], presents a closed-form math-
ematical method for the determination of surfaces bounding

the volume. The work presented in this paper is formalism
for the development of a systematic method for computing
the swept volume generated by consecutive sweeping.

While there has been an extensive amount of work pertain-
ing to analysis and formulations for swept volume techniques,
we cite those that have appeared in recent years and refer the
reader to visit the web page dedicated to swept volumes
research and applications [www.icaen.uiowa.ed/am/sweep/
sweept]. Recent work in the field include Refs. [3–16].

The consecutive sweep of a geometric entity in a Compu-
ter-Aided Design (CAD) environment is a very effective
method for producing complex solids as was shown in
recent work by [17]. In this paper, we present an effective
method to formulate the sweep equation for multiple
revolve and extrude operations that would serve as a prepro-
cessor module in a CAD environment as illustrated in Fig. 1.

A circle, for example, is extruded along an axis to
produce a cylindrical surface characterized by two para-
meters. This surface is revolved about another axis to
yield a volume characterized by three parameters. Again,
the volume is now extruded to yield a more complex solid in
four parameters. This design method provides a level of
flexibility that is not evidenced by any of the aforemen-
tioned modeling methods but that can be used as a comple-
mentary aid to these methods. While this multiple sweeping
idea is often more difficult to visualize, it provides a new
technique for design, especially when the outcome is still
uncertain and further work on the solid may be required.
The proposed method will formulate this multiple sweeping
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using a systematic mathematical approach that would main-
tain the sweep variables in the final expression. As a result, a
change in the design after the initial sweeps have been
selected is now possible and can easily be performed in
analogy with existing parametric methods.

It should also be noted here that sweeping, as in the field
of kinematics, is not limited to revolve and extrude opera-
tions (revolute and prismatic joints). Any sweep analogous
to a joint in kinematics can be modeled. For example, a
spherical joint is a combination of three intersecting revo-
lute joints, and a cylindrical joint is a combination of a
revolute and a prismatic joint. Similarly, other types of
sweeping (such as the general screw motion) can be repre-
sented as well.

The concept of multiple sweeping to generate solid
models has not yet been addressed in the literature because
of the relatively complex mathematics. Envelope theory
[18], for example, typically used in the analysis of swept
volumes, is limited to three parameters. Similarly, the
elegant method of sweep differential equation [19–21],
although has treated several important issues pertaining to
computer aided geometric design using swept volumes, has
not yet been applied to consecutive sweeps of an object. The
Lie group of Euclidean motions is 6-D (6-parameters) and
the swept volume of a 3-D object can usually be expressed
in terms of 4 parameters. Therefore, the potential for SEDE
method to address consecutive sweeping exists.

The Denavit–Hartenberg (DH) method [22–24] was
created to systematically establish a coordinate system in
each link of an articulated kinematic chain. A mechanism,
composed of several links can be represented using the DH
method to relate the position and orientation of the last link
to the first. Because of the DH method, displacement and
angle parameters of the joints connecting two links are
considered as variables in the formulation. In this work,
the DH formulation will be used to characterize the

variables representing each sweep. Indeed, the DH formula-
tion will:

1. provide a systematic method for locating coordinate
systems for each sweep operation;

2. characterize each sweep using four independent para-
meters;

3. formulate the solid model in terms of these variables such
that varying any or all of the parameters can automati-
cally change the solid model;

4. provide an ability for computing solid mass properties
(volume and moments of inertia).

2. The Denavit–Hartenberg representation method

In studying the kinematic motion between two jointed
links, the DH-method defines the position and orientation
of two consecutive links in a chain, linki with respect to link
�i 2 1�, using a�4 × 4� homogeneous transformation matrix.
For our purposes, an extrude, revolve, or any sweep opera-
tion, will be represented by a specific type of kinematic pair
(a joint). The extrusion of a geometric entity along an axis is
identical to rigid body motion of an entity along a prismatic
joint, while revolving a geometric entity about an axis is
identical to rigid body motion about a revolute joint. The
consecutive sweep operations provide a powerful method
for solid modeling.

For example, consider the extrusion of a curvec�t� shown
in Fig. 2(a), along axisa1 to generate a surfaces�t;u�, para-
meterized in two variables. This surface is then revolved
along a curve (about axisa2) to generate a volume
v�t; u; v� parameterized in three variables and shown in
Fig. 2(b).

The volume is then swept again along a curve (about axis
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Fig. 1. DH formulation as a module for solid modeling.
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Fig. 2. (a) Sweeping a curve along an axis. (b) Sweeping a surface along a curve. (c) A sweep of the resulting volume along a curve.



a3) to generate a more complex shape parameterized in four
variablesj�t;u; v;w� shown in Fig. 2(c).

Consecutive sweep operations are represented by a
number of joints. Sweeping along axisa1 is represented
by a translating jointJ1 shown in Fig. 3. Revolving about
a2 is represented by a revolute jointJ2 and revolving about
a3 is represented byJ3.

For a pair of consecutive sweeps about any two axes, the
DH representation provides a systematic method for the
establishing of a homogeneous transformation matrix
between them. The result is a single equation of the solid
as a function of the sweep parameters. A change in one of
the parameters is propagated into the solid without the need
for recreating the sweep operations. This important notion
will become more evident in the following sections.

2.1. Minimal representation between two coordinate frames

In this section, we will use the property that two coordi-
nate systems satisfying the property that thex-axis of each
of the systems is orthogonal to thez-axis of the other system
are related by a Euclidean motion depending on four para-
meters, rather than six parameters necessary for a pair in
general position. Consider two coordinate frames in space,
the first denoted byx0–y0–z0 with origin at O0 and the
second byx1–y1–z1 with origin atO1. Let P be an arbitrary
point in space. Let0v be the vector coordinates ofP with
respect to thex0–y0–z0 reference frame. Let1v be the vector
of coordinates ofP with respect to frame 1. Let0b1 be the
vector describing the origin of frame 1 with respect to frame
0 as shown in Fig. 4.

Using geometry, the position of pointP with respect to
frame 0 can be expressed as

0v � 0b1 1 0R1
1v �1�

where 0R1 � �x1 y1 z1� is the rotation matrix relating the
orientation of both frames. In order to achieve a compact
representation and to simplify the mathematics between

subsequent coordinate frames, thehomogeneous represen-
tation of a generic vectorv can be introduced as the vector
~v � �vT 1�T formed by adding a fourth unit component. By
adopting this representation for the vectors0v and 1v, the
coordinate transformation can be written

0T1 �
0R1

0b1

0 1

" #
�2�

and is termed thehomogeneous transformation matrix.
Hence, transforming a vector from one coordinate frame
to another is written as

0 ~v � 0T1
1 ~v �3�

In order to generate the matrix relating any two sweeps, a
minimal representation ofonly four parametersis necessary
to describe one coordinate system with respect to the other.
These four parameters determine the position and orienta-
tion of a coordinate axis with respect to another using a�4 ×
4� homogeneous transformation matrix. To establish this
matrix, it is possible to observe that a vector resolved in
the ith coordinate systemiv may be expressed in the (i 2
1)th coordinate systemi21v by performing four successive
transformations as follows:

1. A rotation about thezi21 axis by an angle ofui to align
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thexi21 axis with thexi axis (as shown in Fig. 5,xi21 k xi

and pointing in the same direction). Note that the joint
representing each sweep in this case need not be
prismatic or revolute and hence the revolute–prismatic
symbol in Fig. 5.

2. A translation matrix along thezi21 by a distance ofdi

units to makexi21 andxi aligned.
3. A translation matrix along thexi axis by a distance ofai

units to make the two origins of thei and�i 2 1� systems
coincide (thexi and thexi21 will also be aligned).

4. A rotation matrix about thexi axis by an angleai to
coincide the two coordinate systems.

Therefore, the parametersui ;di ; ai ;ai characterize the
position and orientation of any two consecutive sweeps.
This is possible only because of the unique formulation
whereby thez-axes are located along the sweep operation
(joint axis) and thex-axes are perpendicular to any two
consecutive sweeps. The rules for affixing these axes are
addressed in the following section.

Each step above is expressed by abasic homogeneous
rotation or translation matrix(e.g.Tz;d denotes a translation
matrix along z with d units). The product of these four
matrices results in a composite homogeneous trans-
formation matrix relating the�i 2 1� frame to the ith
frame as

i21T i � Tz;dTz;uTx;aTx;a �4�
Substituting for each basic transformation matrix, Eq. (1)
can be written as

Define a set ofgeneralized coordinates q1;q2;…;qn that
represent the variables ini21T i and those of the swept entity,
whereqi � ui for a revolve action andqi � di for an extrude
action. Note that these variables have inequality constraints
imposed on them in the form of

qmin
i # qi # qmax

i �6�
For any sequence of consecutive sweeps, two reference
frames are represented by the multiplication of their
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Fig. 5. Establishing coordinate systems and the four D–H parameters.
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respective transformation. To obtain the transformation
matrix relating the global frame (frame 0) to thenth
frame, multiply the individual transformations as

0Tn�q1;…; qn� � 0T1�q1�1T2�q2�…n21Tn�qn� �
Yn

j�1

j21T j�qj�

�7�
where

0Tn�q1;…;qn� �
0Rn

0pn

0 1

" #
;

and0Rn is a �3 × 3� rotation matrix,0pn is a position vector
from the origin of frame 0 to the origin of thenth frame.
For n-sweep actions, the resulting transformation matrix
with respect to frame 0 is0Tn�q1;…; qn�.For a sweep of
the geometric entityG�qn11;…;qn1m�; where m is the
number of parameters characterizing the swept entity
(example of G is a cylindrical surface given by
G�u; v� � �5 cosu 5 sinu v�T). The totality of points in the
swept volume representing every point in the solid model is
j�q� computed from

�jT�q�1�T � 0Tn�q1;…;qn�
G�qn11;…; qn1m�

1

" #

� �x�q� y�q� z�q� 1�T �8�
where j�q� � �x y z�T and q � �q1;q2;…; qn; qn11;…;

qn1m�T is the extended vector of generalized variables.
Note thatG may have more than one parameter and that
j�q� represents the set of all points inside and on the bound-
ary to the swept volume. The uniqueness of this formulation
is evidenced by its invariance under any subsequent revolve
or extrude operation. Indeed, even when sweep parameters
are changed, the resultingj�q� is concurrently updated with-
out the need for reformulating the problem. In order to
develop a systematic method for generating the solid, we
employ a convention in affixing frames. Once frames are

established, the transformation matrices�i21�T i will be
determined.

2.2. Convention for affixing frames

In order to obtain a systematic method for generating a
�4 × 4� homogeneous transformation matrix between any
two sweeps, the convention for establishing coordinate
systems introduced by Denavit and Hartenberg is adopted.
The procedure for establishing triads is implemented as:

1. Name each operation starting with 1,2,…,n in reverse
order;

2. Embed the zi21 axis along theith sweep axis;
3. Embed the xi axis normal to the zi21 axis and

yi � zi × xi ;
4. Define the geometric entity to be swept with respect to

thenth coordinate frame. The location of the origin of the
first frame (frame 0) can be chosen to be anywhere along
the z0 axis;

5. Denote the entity variables asqn11;…; qn1m. For exam-
ple,G�u; v� becomesG�qn11;qn12�:

To illustrate this convention, consider revolving the surface
G�u; v� shown in Fig. 6(a) about an axisa1 by an angleu1.
The resulting volume is extruded in the direction of the axis
a2 by a distanced2, followed by another revolving sweep
about the axisa3 with an angleu3. Revolving sweeps are
replaced by revolute joints shown as cylindrical surfaces in
Fig. 6(b) and located along the axesa1 and a3. Extrude
sweeps are replaced by prismatic joints shown as prismatic
members in Fig. 6(b). Thezi axes are now located along
each joint, starting with the last sweep operation such that
the axes are namedz0, z1, andz2. The x-axes are located
using the second convention and they-axes are not shown.

3. Implicit function theorem and varieties in the
manifold

Every point in the solid model characterized byj�q� is
subject to the constraints of the parameters of Eq. (6). To
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Fig. 6. (a) A surface subjected to a revolve, an extrude and a second revolve sweeping. (b) Replacing sweeps by joints and using the rules for affixing frames.



impose the inequality constraints of Eq. (2) in terms of the
sweep variables, it is possible to transform the constraint of
Eq. (2) into equality by introducing a new set of generalized
coordinatesli such that it is rewritten as

qi � ai 1 bi sinli i � 1;…; n 1 m �9�
whereai � �qmax

i 1 qmin
i �=2 andbi � �qmax

i 1 qmin
i �=2 are the

mid-point and half-range of the constraint. Augmentingj�q�
by the constraints, a point in the solid model is represented
by a manifold as

H�qp� �
j�q�

qi 2 ai 2 bi sinli

" #
i � 1;…;n 1 m �10�

whereqp � �qT lT�T is 2�n 1 m� × 1 and is the vector of all
generalized coordinates. The Jacobian of the constraint
function is a nonsquare�3 1 n 1 m� × 2�n 1 m� matrix
given by

Hqp �
jq 0

I ql

" #
�11�

where the subscript notation denotes a derivative such that
Hqp � 2H=2qp

; and jq � 2j=2q; and ql � 2q=2l; and
where I is the identity matrix. In order to have a well-
posed formulation; constraints that are used to model the
geometry of this problem should be independent, except at
certain critical surfaces in the manifold (Implicit Function
Theorem) when the Jacobian becomes singular. It is

important, therefore, that there not be open sets in the
space of the generalized parameters in which the constraints
are redundant. Redundancy occurs when the JacobianHq, is
rank-deficient which will subsequently definevarieties in
the manifold. For ann-parameter solid,Hq is rank deficient
on the basis of two conditions that were derived by [17] and
are generalized in Appendix A. Singularities as a result of
the Jacobian rank deficiency condition are denoted bypi .
Varieties in the manifold are expressed by substituting the
singularitiespi into j�q� such that the equation of a variety is

j�u� � j�u; pi� �12�
The algorithm for creating and representing a solid model
that is as a result of sweep operations and based on the
Denavit–Hartenberg representation is shown in Fig. 7.

3.1. Mass properties

Because this formulation yields closed form surface
equations describing the boundary of the solid model, it is
now possible to apply the divergence theorem to compute
the various mass properties that are essential to a solid
modeler. The contribution of a varietyj�i��u�, where
u � �q1 q2�T, to the volume of a solid model with unit
normal n̂�i� using the divergence theorem is given by

3V �
ZZ

A
j�i��u�·n̂�i� dA �13�

K. Abdel-Malek, S. Othman / Computer-Aided Design 31 (1999) 567–583572

Given a number of Sweep operations

1. Embed the zi-1 axis along the ith sweep axis
2. Embed the xi axis normal to the zi-1 and
3. Define the sweep variables qi  (use reverse order for designation)

y z xi i i= ×

Fill-in the DH-Table
θi       di       ai       αi

i
i

i i i i i i i

i i i i i i i

i i i

a

a

d
− =

−
−

L

N

M
M
M
M

O

Q

P
P
P
P

1

0

0 0 0 1

T

cos cos sin sin sin cos

sin cos cos sin cos sin

sin cos

θ α θ α θ θ
θ α θ α θ θ

α α

Form the Homogeneous Transformation Matrices

    
0 0

1
1

2
1 1

1

T T T T Tn
n

n
j

j
j

n

= =− −

=
∏....

ξ( )
( ,..., )

( ,..., )

( )

( )

( )

*

*

*

*

q
T

q

q

q1 1

1

0
1

1L
NM

O
QP
=

L
NM

O
QP

=

L

N

M
M
M
M

O

Q

P
P
P
P

+ +
n n

n n mq q
q q

f

g

h

Γ

H
0

I qq

q
* =

L
NM

O
QP

ξ

λ

Compute the Jacobian
Apply rank-deficiency 
conditions (compute pi )

      Plot  ξ ξ( ) ( , )u p u= i

Apply a design change as
1. A DH parameter change
2. A parameter limit change

Fig. 7. Algorithm for creating and representing a solid model using the DH-method.



The area is given by dA� ij�i�q1
× j�i�q2

i dq1 dq2 and for a
variety which is a parametric entity, the normal vector is
written as

n̂�i� � j�i�q1
× j�i�q2

ij�i�q1
× j�i�q2

i:

Substituting for dA and forn̂�i� into Eq. (13), the volumeV of
a solid model enclosed by varieties is the summation of the
contribution of all boundary varieties as (note thatn is not a
unit vector)

V � 1
3

Xh
i

ZZ
A
j�i��q1;q2�·n�i� dq1 dq2 �14�

Note that similarly, moments and products of inertia can be
computed.

4. Examples

4.1. An introductory example

Consider revolving the curveG�t� about the axisa1 with
an angleu1 constrained by�2p=4 , u1 , 5p=4� as shown
in Fig. 8(a), and where the curve is constrained as�0 , t ,
3p=2�: The resulting surface will then be swept again about
axis a2 shown in Fig. 8(b) with angle�0 , u2 , p=2�;
followed by another sweep about axisa3, with an angle
(0 , u3 , p).

Using the DH-representation method, thezi-axes are

located along the sweep axes and are denoted byz0; z1; z2

where the numbering scheme has started from the last sweep
operation. Note also that the sweep variablesuis are also
changed toqis but in reversed order where the parametert of
the curve G is denoted last as q4 such that
q � �q1;q2; q3;q4�T � �u3; u2; u1; t�T. The xi axes are also
shown in Fig. 8(c) and are located subject to the rules of
Section 2. Dimensions are shown in Fig. 8(c) and the DH-
parameters are entered into Table 1.

Substituting values for each row of the DH-table into Eq.
(1) yields the following matrices:

0T1�q1� �

cosq1 0 sinq1 0

sinq1 0 2cosq1 0

0 1 0 30

0 0 0 1

26666664

37777775;

1T2�q2� �

cosq2 2sinq2 0 20 cosq2

sinq2 cosq2 0 20 sinq2

0 0 1 0

0 0 0 1

26666664

37777775;

2T3�q3� �

cosq3 0 sinq3 0

sinq3 0 2cosq3 0

0 1 0 0

0 0 0 1

26666664

37777775;

and the swept curve written in terms of the third reference
frame is G�q4� � �5 cosq4 5 sinq4 7�T. Performing the
multiplication of Eq. (4) yields the set representing every
point in the solid model as

j�q�
1

" #
� 0T1�q1�1T2�q2�2T3�q3�

G�q4�
1

" #
�15�

where

and the parameterization of the inequality constraints yields
q1 � p=2 1 �p=2�sinl1; q2 � p=4 1 �p=4�sinl2; q3 �
p=2 1 �3p=4�sinl3, andq4 � p=2 1 �p=2�sinl4: Using the
Jacobian row-rank deficiency condition, there are four sub-
Jacobians, whose determinants are computed and set to
zero as

det�"1"2"3�1 � 1500 cosq2 cosq3

11500 cosq4 cosq2�cosq3�2 1 2250�cosq3�2 sinq2

2500 cosq4 cosq2 sinq3 1 2250 cosq2 sinq3 cosq3

21500 cosq4 sinq3 cosq3 sinq2 1 250�cosq4�2 sin q2

2250�cosq4�2 cosq2 cosq3 sinq3 2 750 cosq2 cosq4

2250�cosq4�2 � �cosq3�2 sinq2 � 0 �17a�

K. Abdel-Malek, S. Othman / Computer-Aided Design 31 (1999) 567–583 573

j�q� �

5 cosq1 cosq2 cosq3 cosq4 2 5 cosq1 sinq2 sin q3 cosq4 1 5 sinq1 sin q4 1 7 cosq1 cosq2 sinq3 1 7 cosq1 sinq2 cosq3 1 20 cosq1 cosq2

5 sinq1 cosq2 cosq3 cosq4 2 5 sinq1 sinq2 sin q3 cosq4 2 5 cosq1 sinq4 1 7 sinq1 cosq2 sinq3 1 7 sinq1 sin q2 cosq3 1 20 sinq1 cosq2

5 sinq2 cosq3 cosq4 1 5 cosq2 sin q3 cosq4 1 7 sinq2 sin q3 2 7 cosq2 cosq3 1 20 sinq2 1 30

2664
3775

�16�

Table 1
DH-parameters of the sweep of example 1

Joint ui di ai ai

1 q1 30 0 p=2
2 q2 0 20 0
3 q3 0 0 p=2



det�"1"2"4�2 � 2500 cosq2 sin q4 cosq3

2750�cosq3�2 sinq4 sinq2

2250 sinq4 cosq4 cosq2�cosq3�2

2750 cosq2 sinq3 sinq4 cosq3

1250 cosq4 sinq3 sinq4 cosq3 sin q2 � 0 �17b�

det�"1"3"4�3 � 2250 cosq2 sinq4 cosq4 � 0 �17c�

det�"2"3"4�4 � 250�cosq4�2 sin q3 2 750 cosq4 cosq3 � 0

�17d�
Condition (i) singularities are the simultaneous solutions to
17(a)–(d)

p1 � { q3 � arctan�3�; q4 � 0}

p3 � { q3 � p=2; q4 � p=2}

p2 � { q3 � p 2 arctan�3�; q4 � p}

p4 � { q3 � p=2; q4 � 3p=2}

Consider the limit 2qlim � �qmax
1 � p�, therefore, w �

�q2 q3 q4�T: The Jacobian�jq % jq1
� is computed and the

rank deficiency condition yieldŝs� �q4 � p=2�. Therefore,
the singular set isp31 � �ŝ< 2qlim� � { q1 � p; q4 �
p=2} : Similarly, other sets are computed as

p5 � { q3 � 2p=4; q4 � 0} ;

p6 � { q3 � 2p=4; q4 � p} ;

p7 � { q3 � 5p=4; q4 � 0} ;

p8 � { q3 � 5p=4; q4 � p} ;

p17 � { q2 � 0; q4 � 0} ;

p18 � { q2 � 0; q4 � p} ;

p19 � { q2 � 0; q4 � p=2} ;

p20 � { q2 � 0; q4 � 3p=2} ;

p21 � { q2 � p=2; q4 � 0}

p22 � { q2 � p=2; q4 � p} ;

p23 � { q2 � p=2; q4 � p=2} ;

p24 � { q2 � p=2; q4 � 3p=2}

p29 � { q1 � 0; q4 � p=2} ;

p30 � { q1 � 0; q4 � 3p=2} ; and

p32 � { q1 � p; q4 � 3p=2}

For dim�2qlim� � n 1 m2 2, the following sets are
identified.

p9 � { q3 � 2p=4;q1 � 0} ;

p10 � { q3 � 2p=4; q1 � p} ;

p11 � { q3 � 5p=4; q1 � 0}
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Fig. 8. (a) A sweep of a curve about an axis. (b) Consecutive sweeps of a
curve. (c) The DH-representation of the complete sweep.



p12 � { q3 � 5p=4; q1 � p} ;

p13 � { q3 � 2p=4; q2 � 0} ;

p14 � { q3 � 2p=4; q2 � p=2}

p15 � { q3 � 5p=4; q2 � 0} ;

p16 � { q3 � 5p=4; q2 � p=2} ;

p25 � { q2 � 0; q1 � 0} ;

p26 � { q2 � 0; q1 � 5p=4} ;

p27 � { q2 � p=2; q1 � 0} ;

p28 � { q2 � p=2; q1 � p}

Substituting each singular set intoj�q� yields the equa-
tion of a variety. For example, substituting the setp14 �
{ q2 � p=2; q3 � 2p=4} into Eq. (24) yields the equation

j14�p14; u� � j14�u�

�
5 cosq1 1 3:535 cosq1 cosq4 1 5 sinq1 sinq4

5 sinq1 1 3:535 sinq1 cosq4 2 5 cosq1 sin q4

451 3:535 cosq4

2664
3775
�18�
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Fig. 9. Varietyj14 (p14, u).

Fig. 10. (a) Varieties 1 through 8. (b) Varietiesj13,…,j16. (c) Varietiesj9;…; j12. (d) Varietiesj17;…; j20. (e) Varietiesj25;…; j28. (f) Varietiesj29;…; j32.

Table 2
DH-parameters for the arbitrary revolving about 4-axes

Joint uI di ai aI

1 q1 10 10 p=3
2 q2 8 12 p=3
3 q3 16 20 p=3



whereu � �q1 q4�T: This variety is plotted and shown in
Fig. 9.Varietiesj1;…; j8 are shown in Fig. 10(a); varieties
j9;…; j12 in Fig. 10(b); varietiesj13;…; j16 in Fig. 10(c);
varietiesj17;…; j20 in Fig. 10(d); varietiesj25;…; j28 in Fig.
10(e); and varietiesj29;…; j32 in Fig. 10(f). Combining all
varieties, the solid model is shown in Fig. 11.

4.2. Arbitrary revolving about four axes

Consider the creation of a solid model by arbitrarily
revolving the curveG�q4� about four axes as shown in
Fig. 12. The curve is given by

G�q4� �
3 cosq4 1 0:866 sinq4

3 sinq4 2 0:866 cosq4

3:5

2664
3775;2p=2 , q4 , p=2

�19�
and is to be revolved first aboutz3, the result of which is
revolved aboutz2, and subsequently revolving the result
aboutz1. In this case, the four sweep axes are selected as

general as possible with no intersections and in various
directions. Thez- andx-axes are located as shown in Fig.
11 and the DH-parameters are presented in Table 2.

Substituting each row into the matrix of Eq. (1) yields

0T1 �

cosq1 20:5 sinq1 0:866 sinq1 10 cosq1

sinq1 0:5 cosq1 20:866 cosq1 10 sinq1

0 0:866 0:5 10

0 0 0 1

26666664

37777775

1T2 �

cosq2 20:5 sinq2 0:866 sinq2 12 cosq1

sinq2 0:5 cosq2 2:866 cosq2 12 sinq1

0 0:866 0:5 8

0 0 0 1

26666664

37777775

2T3 �

cosq3 20:5 sinq3 0:866 sinq3 20 cosq3

sinq3 0:5 cosq3 20:866 cosq3 20 sinq3

0 0:866 0:5 16

0 0 0 1

26666664

37777775
and the vector characterizing the sweep isj�q� whereq �
�q1 q2 q3 q4�T
j�q�

1

" #
� 0T1�q1�1T2�q2�2T3�q3�

G�q4�
1

" #
�20�

with the following constraints 2p=2 # q1 # p=2,
2p=2 # q2 # 2p=3, and2p=2 # q3 # p=2.

Varieties are computed by substituting the singular sets
into j�q� and are plotted in Fig. 13(a). A cross-section of the
volume is taken atz� 0:8 and depicted in Fig. 13(b).

4.3. Design variation

Consider revolving of the surfaceG�u; v� about the axis
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Fig. 11. The resulting solid model.
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Fig. 12. A general four-parameter sweep of a curve.



z2, subsequently extruding along the axisz1, and again
along the axisz0 as shown Fig. 14, where the surface is
given by

G�u; v� � 5 cosv 5 1 u 5 sinv
� �T

;

5 , u , 10; and 0, v , p=2
�21�

Using the DH representation method, thex-axes are located
as shown.

The homogenous transformation matrices are

0T1 �

1 0 0 0

0 0 21 0

0 1 0 q1 1 10

0 0 0 1

26666664

37777775;

1T2 �

1 0 0 0

0 0 1 0

0 21 0 q2 1 7

0 0 0 1

26666664

37777775; and 2T3

�

sin q3 0 cosq3 0

2cosq3 0 sinq3 0

0 21 0 0

0 0 0 1

26666664

37777775
Exchanging u andv with q4 and q5, the vector
j�q�characterizing every point model is

j�q�
1

" #
� 0T1�q1�1T2�q2�2T3�q3�

G�q4;q5�
1

" #
�22�

with 10 # q1 # 20, 7# q2 # 15, and2p=2 # q3 # p=2:
As this is a five-parameter sweep, the resulting Jacbian is
�3 × 5�, hencen� 5. A total of 90singular setsexist. For
example, varieties due to the boundary singular behavior

produced by the limits ofq1; q3; q4 are shown in Fig. 15.
The complete swept volume of the five-parameter sweep is
shown in Fig. 16.

Because of the unique properties of the DH representation
method, variational effects due to design changes can be
addressed. Consider for example introducing a change in
the upper parametric limits of the generalized coordinates. A
change in the upper limit ofq3 fromp=2 top=4; a change in the
upper limit ofq4 from10 to8;and a change in the upper limit of
q5 fromp=2 top=4:The solidmodel can bereadily updatedand
shown in Fig. 17(a). Furthermore, it is now possible to intro-
duce changes in the design variables characterized by the loca-
tion and orientation of the coordinate systems. For example,
consider the change in the angle of the surfaceG by intro-
ducing a change in the DH-Table (a tilt ofp=4). The homo-
geneous transformation matrices�i21�T i are updated
accordingly, and the expression forj�q� is computed. The
updated solid is now shown in Fig. 17(b).

4.4. Mass properties

In order to demonstrate the computation of the volume or
a solid model that is a result of the DH representation,
consider the sweep of a curve about an axis followed by
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Fig. 13. (a) Solid model of the four-axes sweep. (b) A cross-section of the volume.

Fig. 14. Multiple sweeps of a surface to generate a five-parameter swept
volume.



another sweep about a second axis as shown in Fig. 18,
where the parameters are constrained as follows: 0, q1 ,
2708

; 21208 , q2 , 1208
; and21208 , q3 , 1208.

Using the DH parameters, the manifold is characterized by

Combining all varieties (p1 � { q3 � 0} ;
p2 � { q3 � 1208}, p3 � { q3 � 21208} p4 � { q1 � 0},
p5 � { q1 � 2708}, p6 � { q2 � 21208} and
p7 � { q2 � 1208}), singularities q2 � 21208 and 1208

yields the solid model shown in Fig. 18.
Boundary variety patches of the solid model are presented

in Table 1.
The volume of this solid model is computed as 12484.3.

To verify the results, cross-sectional cuts through the solid
were introduced as shown in Fig. 19.

To validate the volume computation, a cross-section was
computed at each unit along thez-axis, the area computed,
and the volume calculated by integrating across the cross-
sections.

4.5. A four parameter solid model

The Denavit–Hartenberg parameters are presented in
Table 2 and the resulting swept volume shown in Fig. 20.
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Fig. 15. Varieties of the manifold.

Fig. 16. Swept volume of the five-parameter sweep.

j�q� �
10 cosq1 cosq2 1 5 cosq1 cosq2 cosq3 2 5 cosq1 sinq2 sinq3

10 cosq2 sinq1 1 5 cosq2 cosq3 sinq1 2 5 sinq1 sinq2 sinq3

10 sinq2 1 5 cosq3 sinq2 1 5 cosq2 sinq3

2664
3775 �23�

Variety Parametric limits Volume
contribution

j�1� 0 # q1 # 3p=2; 22p=3 # q2 # 2p=3 27547.1
j�2� 0 # q1 # 3p=2; 22p=3 # q2 # 2p=6 3060.79
j�2� p=2 # q1 # p; 2:68p=8 # q2 # 2p=3 510.11
j�3� 0 # q1 # 3p=2; p=6 # q2 # 2p=3 3060.79
j�3� p=2 # q1 # p; 22p=3 # q2 # 22:68p=8 610.11
j�4� 2p=3 # q2 # p=3; 22p=3 # q3 # 2p=3 0
j�5� 2p=3 # q2 # p=3; 22p=3 # q3 # 2p=3 0
j�6� p=2 # q2 # p; 22p=3 # q3 # 0 1382.5
j�7� p=2 # q2 # p; 0 # q3 # 2p=3 1382.5

Total 37453



4.6. A five-parameter solid model

Consider the sweep of the hemispherical surface given by
G�q4;q5� � �25 cosq4 sinq5 2 5 sinq4 sinq5 5cosq5�T;
0 # q4 # 2p and2p=2 # q5 # p=2 three times as given by
the following transformation matrices.

0T1 �

cosq1 0 2sinq1 0

sinq1 0 cosq1 0

0 21 0 25

0 0 0 1

26666664

37777775;

1T2 �

sin q2 0 cosq2 0

2cosq1 0 sinq2 0

0 21 0 0

0 0 0 1

26666664

37777775;

2T3 �

sin q2 21 0 0

1 0 0 0

0 0 1 151 q3

0 0 0 1

26666664

37777775
Unilateral constraints are defined as 0# q1 # 2p,
2p=4 # q2 # 5p=4, 0 # q3 # 5. Using Denavit–Harten-
berg, the sweep is given by

Rank deficiency criteria are applied toj yielding the
following singular sets.

p1 : { q2 � p=2; q4 � 0; and q5 � p=2}

p2 : { q2 � 2p=4; q4 � 0; and q5 � 0} ;

p3 : { q2 � 2p=4; q4 � p=2; and q5 � p=2}

p4 : { q2 � 2p=4; q4 � 3p=2; and q5 � p=2}

p5 : { q3 � 0; q4 � 0; and q5 � 0}

p6 : { q2 � p=2; q3 � 0; and q4 � 0} ;
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(a) (b) 

Fig. 17. (a) The updated part due to a design variation. (b) Effect of changing the DH-parameters.

j�qp� �
25 sinq5 cosq1 sinq2 sinq4 2 5 sinq5 sinq1 cosq4 1 5 cosq1 cosq2cosq5 1 15 cosq1 cosq2 1 q3 cosq1cosq2

25 sinq5 sin q1 sinq2 sinq4 1 5 sinq5 cosq1 cosq4 1 5 sinq1 cosq2 cosq5 1 15 sinq1cosq2 1 q3 sinq1 cosq2

5 cosq2 sin q4 sinq5 1 5 sinq2 cosq5 1 15 sinq2 1 q3 sinq2 1 25

2664
3775

Joint No. u d A a

1 q1 2 90 5 0 90
2 q2 1 90 0 0 90
3 0 q3 1 4 0 2 90
4 q4 0 0 90



p7 : { q3 � 5; q4 � 0; and q5 � 0}

p8 : { q2 � p=2; q3 � 5; and q4 � 0} ;

p9 : { q2 � 2p=4; q3 � 0; and q4 � p=2}

p10 : { q2 � 2p=4; q3 � 5; and q4 � p=2}

p11 : { q3 � 0 and q5 � p=2}

p12 : { q3 � 5 and q5 � p=2}

Note that hypersurfaces due top11 andp12 are parametrized
in three variables�q1; q2; and q4� indicating coupled
singular behavior. A cross section of the workspace of the
5-DOF manipulator depicting all singular surfaces is shown
in Fig. 21.

5. Conclusions

A mathematical formulation and a representation
method are demonstrated for the creation of solid
models. It was shown that the Denavit–Hartenberg repre-
sentation method adopted from kinematics is well suited for
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(a) (b) (c) 

Fig. 19. (a) Atz� 1.0. (b) Atz� 5.0. (c) Atz� 10.0.

Fig. 18. (a) Revolving of a curve about two axes. (b) Resulting solid model.



the representation of solid models that are created as a result
of multiple of sweep (combination of revolve and extrude)
operations.

In CAD systems, it is often the case that a designer
starts with a simple geometric entity and applies a
number of consecutive sweeps to produce a desired
shape. While various transformation vectors can be used
to represent the resulting set, the DH representation
method permits the designer to study a design change
corresponding to a variation in one of the parameters.
As a solid modeling method, the DH formulation can
be used as a preprocessor to the sweep formulation
in a CAD environment. An experimental computer
code using Mathematicaw was implemented for
demonstration purposes but has been shown to have
highpotential for implementation into CAD/CAM
software.

In this formulation, it was shown that consecutive
sweeps are systematically modeled using the DH repre-
sentation method. The DH method relates any two such
sweeps by only four parameters (four basic transforma-
tion matrices). This minimal representation makes it
easier for addressing multiple sweeps and simplifies
the computations. Parameter limits imposed in terms
of inequality constraints are also taken into considera-
tion where inequalities are converted to equalities
through the introduction of slack variables. It was
shown that the implicit function theorem applied to
the non-square Jacobian delineate two types of singular
sets. It was also shown that these sets when substituted
into the position vector characterize equations of vari-
eties of the manifold. Because of the closed-form equa-
tions describing the boundary of the solid model, it is
possible to compute mass properties using the Diver-
gence theorem. While this formulation does not replace
existing methods of solid modeling, it is a preprocessor to
a solid modeler that has the capability for generating solids
from sweep operations.

Appendix

For a given non-square�3 1 n 1 m� × 2�n 1 m� Jacobian
defined as

Hqp �
jq 0

I ql

" #
�A1�

There exist two conditions for determining varieties of the
manifoldH.

1. The upper left�3 × �n 1 m�� corner matrix ofHqp is
row rank deficient, i.e. Rank�jq� , 3, i.e. k � 1; 2; or
3. Solutions of the resultingh equations of all three
conditions are sets of constant generalized coordinates
denoted bypi and are characterized by the following
set

pi �

8>>><>>>:
266664

det�"i"j"k�1
..
.

det�"i"j"k�h

377775 � 0; for i; j; k

� 1…�n 1 m� and i ± j ± k

9>>>=>>>; i � 1; 2;…;b �A2�

where "i denotes a column of the matrixjq �
�"i"j"k� and pi is a subset of q such that
qT � �pT

i uT�, i.e. uT contains the remaining non-
constant generalized coordinates. A variety of the mani-
fold is defined by

j�u� � j�pi ; u� �A3�
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Fig. 20. The solid model.
Fig. 21. Swept volume.



2. When certain parameters are at their limits there will
be one zero row (one zero column) inql. The corre-
sponding diagonal elements in matrixjq will be equal
to zero. Therefore, ifqi , qj , and qk are at their limits,
(e.g. qi � qmin

i ) the diagonal elements ofql will
be zero. Thus, the row-rank deficiency ofHqp depends
on

Lq �

jq1
… jqi

jqj
jqk

… jqn

0 … 1 … … … 0

0 … … 1 … … 0

0 … … … 1 … 0

26666664

37777775 �A4�

which is a �7 × �n 1 m�� matrix, with
�qi ; qj ; qk� � �qlimit

i ; qlimit
j ; qlimit

k �. The solution to this
submatrix’s row-rank deficiency condition is equiva-
lent to solving the rank-deficiency for

�jq % �jqi
; jqj

; jqk��;

with qi � qlimit
i ; qj � qlimit

j ; qk � qlimit
k

�A5�

where the notation% represents the exclusion of the right
matrix from the left matrix. Define a new vector2qlim as a
sub-vector ofq, composed of joint coordinates that have
reached their limits, i.e.2qlim ; �qlimit

i ;qlimit
j ;qlimit

k ;…�
and 1# dim�2qlim� # �n 1 m2 3�. Since 2qlim is a
constant vector, the remaining variables inq are denoted
by wT such that

q � �wT
; �2qlim�T�T; and w > 2qlim � f �A6�

If Hw�w; 2qlim � is row-rank deficient, the sub-Jacobian
Hqp will also be rank-deficient. Let the solution for
the rank deficiency ofHw be ŝ, which is a constant
sub-vector ofw, andw � �uT

; ŝT�T. The constant singu-
lar set is defined aspi � �ŝ< 2qlim� and the variety is
again

j�u� � j�pi ; u� �A7�

For the case when dim�2qlim� # �n 1 m2 2�, a combi-
nation of parameters at their limits is taken.
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