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Abstract

A robust control method is developed for a planar dual-arm manipulator system.  Contact and
friction constraints for grasp conditions are considered.  An optimization algorithm is
developed such that a minimization of the energy consumed by the participating arms subject
to equality and inequality constraints of grasp and friction constraints. The necessary Karush-
Kun-Tucker conditions are implemented to characterize admissible solutions.  A robust
controller is proposed using a switching-sliding algorithm for modeling imprecision and
disturbances.  The switching-sliding mode is then replaced by a saturation function that results
in the elimination of the fundamental cause for control chatter. The formulation presents a
control algorithm that is well suited for dual-arm cooperative manipulators.

1  Introduction
The problem of multiple arm cooperative manipulation has attracted attention in various
applications.  The potential for a dual arm system in manufacturing and in robot-assisted
surgery applications has been contemplated by many researchers (Lee 1989, Montana 1992,
Arimoto, et al. 1987, and NASA 1995).

There are many unsolved problems related to dynamic control and grasping of multiple arm
cooperation.  A near time-optimal inspection-task-sequence planning for two cooperative
industrial robots was presented by Cao, et al. (1998) where the algorithm finds a near time-
optimal task sequence of inspection points using continuous joint-acceleration profile.
Ahmadabadi and Eiji (1998) introduced the constrain-move concept as a strategy for executing
cooperative handling of an object.
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Early attempts such as Kerr and Roth (1986), for example, proposed a linear programming
approach to consider the intrinsic inequalities of the system which result from manipulator-
object contact criteria.  Kumar and Waldron (1988) suggested using interaction forces to
address this problem. Using linear programming, Orin and Oh (1981) and Cheng and Orin
(1990) suggested minimizing energy consumption in the mechanism.  Gardner (1991) and
Klein, et al. (1983) addressed the same problem in walking machines.  An optimal force
distribution scheme of multiple cooperating robots was proposed by Kwon and Lee (1998) that
uses the duality theory of nonlinear programming (NLP) combined with the quadratic
programming (QP) to treat normal force constraints. Kazerooni (1987) also used NLP
methods.  Dynamics of cooperating robot systems using the theory of Lie groups was
formulated by Ploen and Park (1997).  Nakamura, et al. (1989) used a nonlinear programming
method to solve this problem.  Another approach using Quadratic Programming was
implemented by Nahon and Angeles (1992) using an optimization technique to minimize the
internal forces in the system.  Quadratic programming was demonstrated to be superior to
linear programming.

Control strategies of dual robot-arm coordination has also been the subject of many studies.
Such a model using a dynamic compensation method was presented by Gu, et al. (1994).
Optimal control laws minimizing joint torque loading were discussed by Hu and Goldenberg
(1993a).  The same authors proposed an adaptive approach to motion and force control of
dual-arm systems in terms of three variable errors (position, control force, and internal force)
and was discussed based on the Lyapunov stability theory (Hu and Goldenberg 1993b).
Contact tasks of dual-arm robots were addressed by Hogan (1988) while object impedance
control for dual-arm cooperative manipulators was addressed by Schneider, et al. (1989).

A Lyapunov-based controller that ensures stability for cooperative manipulators was discussed
by Yale and Agrawal (1998), where the disturbance torque transmitted to the base of the
system by the motion of the manipulators is reduced by altering the order of the reference
trajectory polynomial and its coefficients. Compared to the Lyapunov point controller alone,
the authors determined that the addition of a fifth-order polynomial reference trajectory leads
to superior performance in terms of actuator torque magnitudes and payload repositioning.  A
flexible dual arm system was built by Pfeffer and Cannon (1993).

Bonitz and Hsia (1996) addressed the minimal internal force required to maintain the grasp on
the object is computed from the frictional constraints and sensed forces. A closed-form
solution to the minimization problem is developed which makes the algorithm suitable for real-
time control. The controller uses sensed moments at the palm interface to maintain proper
orientation of the palms to achieve maximum surface contact. Each manipulator’s nonlinear
dynamics is compensated by a robust auxiliary controller which is insensitive to robot-model
uncertainty and payload variation. The controller is only weakly dependent on each
manipulator’s inertia matrix. Stability of the system is analyzed.

Schneider, et al. (1992) developed a control policy that enforces a controlled impedance not of
the individual arm endpoints, but of the manipulated object itself. A parallel implementation for
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a multiprocessor system is presented. The controller fully compensates for the system dynamics
and directly controls the object internal forces.  Other works of interest in this field include
Gouo, et al. (1998), Li and Latombe (1997), Agrawal and Shirumalla (1994), and Tarn, et al.
(1996).

In this paper, a methodology for developing a robust controller will be presented.  Object
dynamics and a proposed control structure are developed in Section 2. Grasp conditions for
the dual-arm system on the object are characterized in terms of inequality constraints in
Section 3.  Robot dynamics expressed in terms of control variables are developed in Section 4.
The control of a dual-arm system is formulated as an optimization problem, developed in
Section 5 and based on the minimization of the energy cost function.  Using the Kuhn-Tucker
(K-T) necessary conditions, several cases are addressed and global minimum solutions are
expressed based on the K-T switching conditions. The switching-sliding mode is then replaced
by a saturation function that results in the elimination of the fundamental cause for control
chatter.

2  Object Dynamics
Multiple-arm manipulation of objects provides flexibility and versatility in task execution.  The
advantages, however, are at the expense of increased control complexity due to the additional
requirements of maintaining a grasp. Coordinating the dynamic interaction between the
participating robot arms also adds to the complexity.  The controller of multiple-arm
cooperative manipulators should include various characteristics such as a position and force
control of the object in free and contact motion.  To illustrate the proposed methodology,
consider the dual-arm manipulator system holding a rectangular object shown in Fig. 1.

Arm 0 Arm 1

object

m0

Figure 1  A dual-arm cooperative system

Each arm has two translational joints and the object is assumed to be firmly grasped with a no-
slip condition.  Because the object is firmly grasped, the system has two degrees of freedom.
Positions and velocities of the object are determined by measuring joint displacements and
velocities of the leader.

The origin of the object reference frame is conveniently located at the task frame of the leader.
Note that to successfully measure and control the position of the object, the end-effector of the
leader must be in static contact with the object surface throughout the coordinated motion.  No
relative motion between the task frame of the leader and the object reference frame is allowed.
Tactile sensors are assumed to be installed on the fingertips of both arms.
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Consider an object of mass m0  being manipulated by the dual-arm system.  The free body
diagram of m0  is shown in Fig. 2.  The force supplied by Arm 0 to the object from the x-
direction will be denoted by farm x0 , and from the y-direction as farm y0 .  Similarly the force

supplied by Arm 1 to the object from the x-direction is denoted by farm x1 , and from the y-
direction as farm y1 .

m0 farm1x

farm1yfarm0y

farm0x

m0g

Figure 2 Free Body Diagram of the Object
The Newton-Euler equations of motion of the object in vector form are

M x M g f f0 0 0 0 1&& + = +arm arm (1)

where M0
0

0

0

0
=

�
! 

"
$#

m

m
 is the mass matrix, g = 0 g

T
 is the gravity vector, && && &&x0 0 0= x xx y

T

is the acceleration vector of the object, and farm arm x arm y

T
f f0 0 0=  and

farm arm x arm y

T
f f1 1 1=  are the forces acting on the contact surface of the object by Arm 0 and

Arm 1, respectively.  It is assumed that the object will not undergo any rotational motion.
Let fd  be the desired force acting on the object by both arms. A control law may be written as

f M a M gd = ′ +0 0 (2)
where the acceleration vector ′a  is expressed using velocity control constants K v  and
proportional constants K p  as

′ = + − + − −a x K x x K x x u&& ( & & ) (& & )r v r p r0 0 (3)

where &xo  is the velocity of the object, u = u ux y

T
 is a control variable to be determined

(Section 6) and xr rx ry

T
x t x t= ( ) ( ) , &xr , and &&xr  are the given position, velocity, and

acceleration of the reference trajectory of x0 .  Both constants K v  and  K p  are ( )2 2×
diagonal matrices with strictly positive elements.

The desired contact force provided by Arm 0 is fd 0  and has components fd d x d y

T
f f0 0 0= .

The contact force provided by Arm 1 is fd1  and has components fd d x d y

T
f f1 1 1= .  The

desired resultant force f f fd dx dy

T

d df f= = +0 1  acting on the object can be written as

f I I f f Kfd d d

T

d= ≡2 2 0 1 (4)
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where I2 is a ( )2 2×  identity matrix, fd d x d y d x d y

T
f f f f= 0 0 1 1 , and K I I= 2 2  is a

( )2 4×  matrix.  Let K + be the pseudo-inverse of K (Allgower and George 1990), such that fd

can be written explicitly as
f K f I K Kd d d= + −+ +( )4 F (5)

where we define F F Fd d x d y d x d y

T

d
T

d
T T

≡ =ζ ζ ζ ζ0 0 1 1 0 1  as an arbitrary vector and I4

is a ( )4 4×  identity matrix.  The pseudo-inverse K + , called the non-squeezing inverse of K by
Walker (1991), is defined by setting it equal to a desired dynamic load distribution matrix Ld

(Lu and Meng 1992) such that

K + = =
�
! 

"
$# =

�

!

    

"

$

####
L

L

L
d

d

d

d x

d y

d x

d y

0

1

0

0

1

1

0

0

0

0

λ
λ

λ
λ

(6)

Replacing K +  by Ld  in Eq. (5) yields

f f I Kd d d d d= + −L L F( )4 (7)
Define the second term of the right hand side of Eq. (5) as the internal force

fint int int= f f
T

0 0  such that f I Kint ( )= −4 L Fd d  which spans the null space of K  and does

not contribute to the motion of the object.  Let
F Fd d0 1= − (8)

then the third term of Eq. (7) L Fd dK 0= ; i.e., fint = Fd  and Eq. (7) simplifies to

f fd d d d= +L F (9)
Equation (9) written separately for Arm 0 and Arm 1 is

f fd d d d0 0 0= L F+    (10)
and  f fd d d d1 1 1= L F+ (11)
Adding Eq. (10) and Eq. (11) and using Eq. (8) yields

L Ld d0 1 2+ = I (12)
and in terms of the diagonal elements of Ld 0  and Ld1  can be written as

λ λd x d x0 1 1+ = (13)
λ λd y d y0 1 1+ = (14)

Equations (16) and (17) are the first two equality constraints that will be used to formulate the
optimization problem.  In order to completely define loading conditions, it is necessary to
introduce the dynamic load distribution vector denoted by c  as

c c c= 0 1 0 0 1 1
T T T

d x d y d x d y

T
= λ λ λ λ (15)

and define the ( )2 2× force matrix as

F =
�
! 

"
$#

f

f
dx

dy

0

0
(16)

Equations (11) and (11) can be written as
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f fd d0 0 0= +c F    (17)
and f fd d1 1 1= +c F (18)
The vector Fdi  is a function of x xi − 0  and its first derivative.  The proper control of Fdi  is
crucial to the grasp-contact stability as was shown by Montana (1992).  To simplify expressing
the optimum formulation in closed form Fdi  is assumed to be a given value.  It is the desired
internal force acting on the contact surface by the ith arm.  In order to take into consideration
internal grasp forces, friction constraints have to be developed. Figure 3 illustrates the block
diagram of the proposed structure of the controller.

Robust
Controller

Object
Controller

Force
Distributor

Internal
Force
Controller

Force
Identification

Arm1
Controller

Arm1
Kinematics

Arm0
Controller

Arm0
Kinematics

Arm0
Dynamics

Object
Dynamics

Arm1
Dynamics

&&Xr

&Xr

Xr

&&Xr

&Xr

Xr

U

Fd

Φd

Fd0

Fd1

&&Xr

&Xr

Xr

X0
&X0

&X1X1
Farm0 Farm1

Tact 0

Tact1

Farm0

Farm1

&Θ0

Θ0

&Θ1

Θ1

Figure 3 Controller Structure
Contact and frictions constraints on the object characterize grasp conditions and are discussed
in the following section.

3  Grasp Conditions
To achieve a no-slippage contact grip, the following contact and friction constraints have to be
satisfied (Kerr and Roth 1986, Montana 1992).
(1) Contact Constraints:

fd x0 0≥   (19)
 fd x1 0≤ (20)

Contact forces acting on the object must act along the normal to the contact surface. Equations
(19) and (20) can be expressed in terms of the components of χ  as

− − ≤fdx d x d xλ ζ0 0 0   (21)

fdx d x d xλ ζ1 1 0+ ≤ (22)
(2) Friction Constraints:
The normal force to the contact surface has to prevent slippage such that

µf fd x d y0 0≥ (23)

− ≥µf fd x d y1 1 (24)
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where µ  is the friction coefficient.  The above equations can also be expressed in standard
form in terms of the components of the dynamic load distribution vector c  such that

− − − + ≤µ λ λ µζ ζf fdx d x dy d y d x d y0 0 0 0 0( ) (25)

− + − − ≤µ λ λ µζ ζf fdx d x dy d y d x d y0 0 0 0 0( ) (26)

µ λ λ µζ ζf fdx d x dy d y d x d y1 1 1 1 0− + − ≤( ) (27)

µ λ λ µζ ζf fdx d x dy d y d x d y1 1 1 1 0+ + + ≤( ) (28)

The set of equality constraints Eqs. (13 and 14) and inequalities (21, 22, and 25-28) completely
describe the feasible region.  Before presenting the problem as a minimization of a cost
function fcost  (Section 6), the kinetics of the dual-arm systems must be addressed.

4  Robot Dynamics
The equations of motion for Arm 0 are

H g t J f0 0 0 0 0 0
&&q + = −act

T
arm (29)

where H0
01 02

02

0

0
=

+�
! 

"
$#

m m

m
 is the mass matrix, &&

&&

&&

q 0
01

02

=
�
! 

"
$#

q

q
 is the acceleration vector in terms

of the generalized coordinates of Arm 0 ( q01  and q02 ); g0 01 02 0= +( )m m g
T

 is the gravity

force vector; tact act act

T

0 01 02= τ τ  is the vector of actuating forces for Arm 0 and Arm

1:τ act 01  and τ act 02 , respectively; and J0

0 1

1 0
T =

�
! 

"
$# . The actuating force for Arm 0 is tact 0  and

can be written as
t t J fact

T
d0 0 0 0= ′ +   (30)

where ′t0  can be written as a function of control constants as

′ = − + − + − +−t H J x J K x x K x x g0 0 0
1

0 0 0 0 0(&& & & ) ( & & ) ( )r v r p rq (31)

The resulting robot dynamics for Arm 0 in task space becomes
(&& && ) (& & ) ( ) ( )x x K x x K x x J H J f fr v r p r

T
arm d− + − + − = −−

0 0 0 0 0
1

0 0 0 (32)

 Forces acting on the two arms are depicted in Fig. 4.

q01

q02

g
Arm 0

m02m01

τact01

τact02

q12

q11

Arm 1g

m12 m11

τact11

τact12

farm0y

farmox farm1x

farm1y

Figure 4  Free Body Diagram of Arm 0 and Arm 1
Similarly, the equations of motion for Arm 1 are:
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H g t J f1 1 1 1 1 1
&&q + = −act

T
arm (33)

where H1
11 12

12

0

0
=

+�
! 

"
$#

m m

m
, &&

&&

&&

q1
11

12

=
�
! 

"
$#

q

q
, g1

11 12

0
=

+�
! 

"
$#

( )m m g
, tact

act

act
1

11

12

=
�
! 

"
$#

τ
τ

, and

J1

0 1

1 0
T =

−
�
! 

"
$#  and the actuating forces for Arm 1 ( tact1 ) are

t t J fact
T

d1 1 1 1= ′ + (34)

where ′ = − + − + − +−t H J X J K x x K x x g1 1 1
1

1 1 1 1 1( && & & ) ( & & ) ( )r v r p rq (35)

Robot dynamics for Arm 1 in task space becomes
(&& && ) ( & & ) ( ) ( )x x K x x K x x J H J f fr v r p r

T
arm d− + − + − = −−

1 1 1 1 1
1

1 1 1 (36)

Substituting Eq. (32) and Eq. (36) into Eq. (2) and rearranging yields
                    (&& && ) (& & ) ( )x x K x x K x xr v r p r− + − + −0 0 0

= − − + − + − +− − −u M J H J x x K x x K x x0
1

0 0 0
1

0 0 0{ (&& && ) ( & & ) ( )T
r v r p r

J H J x x K x x K x x1 1
1

1 1 1 1
− − + − + −T

r v r p r(&& && ) ( & & ) ( ) (37)

The set of equations (Eq. 37) are the overall equations of motion for the cooperative system
expressed in task space.  By properly designing a robust control law for u, the left-hand side of
Eq. (40) approaches zero, then the value of farm0  approaches the value of fd 0 , the value of
farm1  approaches the value of fd1 , and x x1 0−  approaches a constant vector as time approaches
infinity and the convergence rate can be modulated.  The development of a robust controller
will be discussed in section 8.

5  Minimization of the Energy Cost Function and the Kuhn-Tucker
Conditions
Suppose that the objective in determining an optimal force distribution is to minimize the total
energy E consumed by the actuators of the participating arms.  It is then required to minimize

E act
T

act= 1

2
t t   (38)

where t t tact
T

act
T

act
T T

act act act act

T≡ =0 1 01 02 11 12τ τ τ τ (39)

Equation (38) can be written as

E acti
T

acti
i

=
=
∑1

2 0

1

t t (40)

Substituting Eq. (33) and Eq. (34) into Eq. (40) yields

E i i
T

di

T

i i
T

di= ′ + ′ +1

2
t J f t J f i= 0, 1 (41)

Substituting Eq. (17) and Eq. (18) into Eq. (41), the cost function fcost  may be defined by
collecting the dynamic load distribution terms such that

fcos ( ) ( ) ( )ti i
T

i i
T

i i
T

di
T

i i
T T

i i
T

ic F c c c≡ ′ + +f J t f J J f J J
1

2
i=0,1 (42)

or written in terms of two components as
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fcost = + + +G c c Y c G c c Y c0 0 0 0 0 1 1 1 1 1

1

2

1

2
T T T T (43)

where G Fi
T

i i
T

i i
T

di= ′ +f J t f J J  (44)

and Yi
T

i i
T= f J J f (45)

Let &&x 0r =  and assume that a proper robust control law has been applied on the system, then it
is reasonable to expect that & &x x 0r − ≈1  and x x 0r − ≈1 .  Then ′ti  is expressed as

′ = =
+�

! 
"
$#t g0 0

01 02

0

( )m m g
    and    ′ = =

+�
! 

"
$#t g1 1

11 12

0

( )m m g
  (46)

Substituting for ′ti  and J i  into Eq. (49) yields

G0

0

0 01 02

=
+ +

�
! 

"
$#

ζ
ζ

d x dx

d y dy

f

m m g f( ( ) )
   and   G1

1

1 11 12

=
+ +

�
! 

"
$#

ζ
ζ

d x dx

d y dy

f

m m g f( ( ) )
(47)

and Y Y0 1= =
�
!  

"
$##

f

f
dx

dy

2

2

0

0
(48)

The cost function is expanded as

fcost ( ) ( )χ λ ζ λ ζ λ λ= + + + + +1

2

1

2
2

0
2

0 0 0 01 02 0
2

0
2f f m m g f fdx d x d x dx d x d y dy d y dy d y

+ + + + + +1

2

1

2
2

1
2

1 1 1 11 12 1
2

1
2f f m m g f fdx d x d x dx d x d y dy d y dy d yλ ζ λ ζ λ λ( ) (49)

subject to equality constraints Eqs. (13,14), and inequality constraints Eqs. (21,22), and Eqs.
(25-28).  Rewritten here for clarity, the complete set of constraints denoted by hi  is

h d x d x1 0 1 1 0≡ + − =λ λ (50)
h d y d y2 0 1 1 0≡ + − =λ λ (51)

h fdx d x d x3 0 0 0≡ − − ≤λ ζ (52)

h fdx d x d x4 1 0 0≡ + ≤λ ζ (53)

h f fdx d x dy d y d x d y5 0 0 0 0 0≡ − − − + ≤µ λ λ µζ ζ3 8 (54)

h f fdx d x dy d y d x d y6 0 0 0 0 0≡ − + − − ≤µ λ λ µζ ζ3 8 (55)

h f fdx d x dy d y d x d y7 1 1 1 1 0≡ − + − ≤µ λ λ µζ ζ3 8 (56)

h f fdx d x dy d y d x d y8 1 1 1 1 0≡ + + + ≤µ λ λ µζ ζ3 8 (57)

The optimization problem is now in standard form and can be stated as a minimization of the
cost function such that

min ( )  fcost c G c c Y c= T T+ 1

2
(58)

where G G G= 0 1
T T T

 and  Y
Y

Y
= 0

1

2 2 2 20

0
�
! 

"
$# = diag f f f fdx dy dx dy3 8  subject to equality and

inequality constraints as hi ( )χ = 0 ; i = 1,2  and hi ( )χ 0≤ ; i = 3,...,8 .  Because both equality
and inequality constraints are linear, the feasible region is a convex set.  It can be proved that
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the cost function is also a convex function by showing that the Hessian matrix is positive semi-
definite (has all eigenvalues nonnegative) at all points in the constraint set, i.e.

∇ =2fcost ( )c Y (59)

has eigenvalues f f f fdx dy dx dy
2 2 2 2 0,  ,  ,  ≥ .  The convexity guarantees that Karush-Kuhn-Tucker

condition (Arora 1989) for a regular point in the constraint set is a necessary and sufficient
condition.  Furthermore, any candidate points for local minimum is also a global minimum.

However, uniqueness of global minimum points is not guaranteed, because the Hessian may
not be positive definite (either fdx  or fdy  could be zero.)  In the following discussion, it is

assumed that f fdx dy⋅ ≠ 0.  If either fdx  or fdy  becomes zero, the problem can be treated as a

special case and trivially solved (if both become zero, there is no cost function.)  Under this
assumption, the problem is strictly convex and the K-K-T conditions are both necessary and
sufficient for a global minimum point.  Note that the regularity of the candidate point has to be
checked if more than one constraint is imposed.  Regularity is checked by ensuring the linear
independence of the set of gradient vectors of active constraints.

In order to determine a solution for the optimization problem, the Lagrangian function
L( , )c v  is formulated as

L T( , ) (c v v h≡ +fcost χ) (60)

where v = v v
T

1 8,...,  are the Lagrange multipliers and h( ,...,c) = h h
T

1 8  are the constraints

defined above.  Consider the K-K-T conditions for a regular point of the constraint set such as
∇ = ∇ + ∇ =L h v 0fcost ( ) T (61)

subject to the eight constraints and to the switching conditions given by
v hi i ( )c = 0    i=3..8   (62)

where a non-negativity condition is imposed on Lagrange multiplier of the inequality
constraints as

vi ≥ 0      i=3..8   (63)

Since there are six inequality constraints the switching conditions lead to 2 646 =  distinct
normal solution cases.  If the maximum actuating torque constraints were included, there could
have been more distinct solution cases.  The method of Goldfarb and Idnani (1983) or the
method of Nahon and Angeles (1992a and 1992b) can be applied for strictly convex problems
with large numbers of inequality constraints by successively choosing sets of active constraints
and minimizing the objective function subject to these constraints.

In order to explicitly solve the K-K-T condition, the problem is simplified by neglecting some
of the constraints. In this case, the friction constraints h5  through h8  can be neglected by
assuming that the surfaces of the object and end-effector have matching teeth.  The K-K-T
condition for the simplified problem can be written as
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∇ =

+ + −
+ + + +

+ + +
+ + + +

�

!

     

"

$

#####
=L 0

f f u f u

m m g f f u

f f u f u

m m g f f u

dx d x d x dx dx

d x dy dy d y

dx d x d x dx dx

d x dy dy d y

2
0 0 1 3

0 01 02
2

0 2
2

1 1 1 4

1 11 12
2

1 2

λ ζ
ζ λ

λ ζ
ζ λ

( )

( )

  (64)

subject to the following constraints h1 , h2 , h3 , h4 , the switching conditions
v h3 3 0=    and v h4 4 0=   (65)

where h fdx d x d x3 0 0 0≡ − − ≤λ ζ  and h fdx d x d x4 1 0 0≡ + ≤λ ζ  and the non-negativity condition of
the Lagrange multipliers

v3 0≥ , v4 0≥ (66)
Note that the column vectors of the gradient of constraints is

∇ =

−�

!

    

"

$

####
h

1 0 0

0 1 0 0

1 0 0

0 1 0 0

f

f

dx

dx

(67)

and is linearly independent if fdx  is nonzero. Therefore, all the points in the constraint set are
regular if fdx ≠ 0 .  The switching conditions in Eqs. (66) give rise to four cases for the solution
of the K-K-T conditions.  Each case will be separately discussed.

Case 1: v3 0= , v4 0= .  Solving the system of Eqs. (64-67) subject to this condition, it can be
shown that h fdx3 2= −  and h fdx4 2= .  Since both of these conditions cannot satisfy
inequalities h3  and h4  (note that f fdx dy  is nonzero), the K-K-T conditions are violated.  Thus,

there is no solution for this case.

Case 2: v3 0= , h4 0= .  It can be shown that h fdx3 = − and v fdx4 = , thus, a solution exists if
fdx ≥ 0  which results in the global minimum point as

λ ζ
d x

d x

dxf0
01= −   (68)

λ ζ
d x

d x

dxf1
1= −   (69)

λ ζ
d y

d x

dy dyf

m m m m g

f0
0 11 12 01 021

2 2
= − + + − −( )

(70)

λ ζ
d y

d x

dy dyf

m m m m g

f1
1 11 12 01 021

2 2
= − − + − −( )

(71)

u fdx1
2= − (72)

v
f m m m m gfdy dy

2

2
11 12 01 02

2 2
= − −

+ − −( )
(73)

v fdx4 = (74)
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Case 3: v4 0= , h3 0= . It can be shown that v fdx3 = − and h fdx4 = .  Thus, a solution exists if
fdx ≤ 0  and the global minimum point is

λ ζ
d x

d x

dxf0
0= − (75)

λ ζ
d x

d x

dxf1
11= − (76)

λ ζ
d y

d x

dy dyf

m m m m g

f0
0 11 12 01 021

2 2
= − + + − −( )

(77)

λ ζ
d y

d x

dy dyf

m m m m g

f1
1 11 12 01 021

2 2
= − − + − −( )

(78)

v fdx1
2= − (79)

v
f m m m m gfdy dy

2

2
11 12 01 02

2 2
= − −

+ − −( )
(80)

v fdx3 = − (81)
Case4: h3 0= , h4 0= .  Solving the system of Eqs. (64-67) and substituting into the inequality
constraints results in two violated equality constraints h1  and h2 . The K-K-T conditions are
violated, thus, no solution exists for this case.

6  Robust Controller
A sliding control algorithm that plays the role of regulating the error given in Eq. (40) will be
introduced in this section.  First, consider decoupling Eq. (37) along each direction of the end-
effector directions and rewriting it as

K x x K x x x x u up r v r r( ) ( & & ) (&& &&) ~− + − + − = + (82)

where ~u  is a vector of perturbation parameters.  The goal is to make the left hand side of Eq. (82)
equal to zero for a target reference trajectory ( xt ), such that

K x x K x x x x 0p r t v r t r t( ) ( & & ) (&& && )− + − + − = (83)

where xt  is defined as the Target Impedance Reference Trajectory (TIRT).  Subtracting Eq.
(83) from Eq. (82) to determine xr  and its derivatives yields

K x x K x x x x u up t v t t( ) (& & ) (&& &&) ~− + − + − = + (84)

The error is defined as
e x xt t= − (85)

where et t t

T
e e= 0 1 .  Substituting for ( )x xt −  into Eq. (84) and rearranging, the resulting

error dynamic equation can be written as
&& &

~e K e K e u ut p t v t= − − + + (86)

Assume that the sliding surface is chosen as

s e B e C e di ti i ti i ti

t

= + + I& τ
0

i=0,1 (87)
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where s = s s
T

0 1  and  ( Bi and Ci ) are design parameters that must satisfy the Routh-

Hurwitz criterion (Raven 1995) to form a sliding surface and τ  is time.  The vector
differentiation of both sides of Eq. (87) yields

& && &s e B e C ei t i t i t= + +       i=0,1 (88)
 Substitute Eq. (103) into Eq. (105) yields

&

~
& &s u u K e K e B e C ei i i p ii ti v ii t i ti i t= + − − + +3 8 1 6  i=0,1 (89)

where the double indices are used to indicate matrix notation.  To attract any given initial error
states into the sliding surface, the controller should satisfy the following sliding condition

s s si i i i& ≤ −η  i=0,1 (90)

where η  is a positive scalar that can be selected to achieve the desired attracting speed.  By
letting &s 0= , the control variable u  can be determined from Eq. (89) such that

u K C e K B e ui p ii i ti v ii i ti i= − + − −3 84 9 1 63 8& ~ ;     i=0,1 (91)

The perturbation vector ~u  is an unknown quantity.  It is assumed, however, that ~u  has a
known upper-bound denoted by ~uub  such that

~ ~u u≤ ub (92)

Consider replacing the unknown perturbation term ~u  by a sign function ρ  such that

u K C e K B ei p ii i ti v ii i ti i= − + − −3 84 9 1 63 8& ρ i=0,1 (93)

where r = ρ ρ0 1

T
is defined as

r h

h

h= + =
+ >
+ <

%
&K
'K

~ sgn( )

~

(~ )u S

u s

u s

s

ub

ub

ub2 7
    if   

    if   

      if       = 0

0

0

0

(94)

The resulting s dynamics equation for the exact switching sliding mode control law is
&

~ ~ ~ sgn( )s u u u s= − = − +r h
ub2 7 (95)

Multiplying both sides if Eq. (95) by si  yields

s s s u u si i i i i
ub

i i&

~ ~= − + η2 7 = − − <s u u s si i i
ub

i i i
~ ~ η 0;      i=0,1 (96)

which satisfies the sliding condition of Eq. (90).

Although the above exact switching sliding mode control law is able to compensate for
modeling imprecision and disturbances, it includes the sign function r  and hence has to be
discontinuous across s(t).  Since ρi  is discontinuous at si = 0 , chattering phenomenon may
occur in the neighborhood of the sliding surface.  A replacement for the sign function by the
unit saturation function is proposed by Slotine and Sastry (1983).  This operation eliminates
the fundamental cause of control chatter by deploying a continuous switching element.
However, if the forced oscillations of the s-dynamics display high frequencies, the
corresponding saturation function control component shows equally high frequency dither,
which is not desired either (Elmali 1992).  Therefore, it should be advantageous to enforce the
s-dynamics into a low-pass filter mode to subdue the effects of the high frequency components
of perturbations.
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To formulate the above, consider the introduction of a saturation function defined as

ρ η
η

φ
φ

η φ
i i

ub
i i

i
ub

i i

i
i i

i
ub

i i i i

u s
u s

s

u s s

= + =
+ ≤

+ >

%
&K
'K

~ ( )
(~ )

(~ ) sgn( )
2 7sat

    if   

    if   
(97)

where s = φ  is the so-called boundary layer.  Once s penetrates into the boundary layer as

si i≤ φ (98)

the s-dynamics takes the following form

&

~
~

s u
u

si i

i
ub

i

i
i= −

+ η
φ

2 7
(99)

or &

~
~s

u
s ui

i
ub

i

i
i i+

+
=

η
φ

2 7
 (100)

This equation represents a low-pass filter against perturbations and the tunable break frequency
denoted by ω bi  is

ω
η

φbi

i
ub

i

i

u
≡

+~2 7
 (101)

On the other hand, the boundary layer thickness φ  is given as

φ
η

ωi

i
ub

i

bi

u
=

+~2 7
(102)

The boundary layer thickness φ  should be kept as small as possible for better tracking
accuracy.  However, larger η  offers stronger attraction of the sliding surface and hence
enhanced robustness of the controller.  It indicates a trade-off between performance and
robustness in the design process.

Notice that the break frequency ω b  should be kept as large as possible because it results in
thinner layer and better tracking accuracy.  Moreover, even for those perturbation frequencies
smaller than ω b , the attenuation rate is still much effective when larger ω b  is applied than
when smaller ω b  is in use.  Furthermore, large ω b  and η  can be simultaneously selected to
increase the response speed of the s dynamics without affecting the thickness of the boundary
layer (thus affecting the tracking accuracy).  The only limiting factor in the selection of ω b  is
the control actuation frequency, which is often subject to the physical limitation of the actuator
maximum actuating frequency as well as the sampling rate.  From the above considerations, let

ω ωbi i= max (103)
where ω max  is the limit of control actuation frequency, then replacing ω bi  in Eq. (102) yields

φ η
ωi
i
ub

i

i

u= +~

max

(104)

A remark on the boundary layer concept is that ~uub  is often conservatively chosen due to the
complexity and difficulty of estimating ~u , which may result in poor tracking accuracy (Slotine
and Li 1991).  This approach is often justifiable because (1) a guaranteed robustness is often
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favored over performance, (2) when the error state is outside of the boundary layer, the
optimal strategy is to exercise as much torque as the actuators can afford, and (3) once the
error state is pushed within the boundary layer, it is likely that the error state will not touch the
boundary layer again.  In this case, increasing the boundary layer has no effect on the tracking
performance.

A dual-arm system is set to track a ramp input, which requires that the dual arm follow a
straight line from point (0.0) to (10,10) with constant velocity.  Figure 5 shows a trajectory
plot of the end-effector of Arm 0, of Arm 1, and of the object.

Fig. 5 Trajectory plots of the end-effector of Arm 0, Arm 1, and the object

7  Conclusions
Control of dual-arm cooperative systems involves vast areas of disciplines but is becoming
increasingly important because of its potential use in many fields such as aerospace robotics
where two floating arms are to perform orchestrated tasks; in surgery where two manipulator
arms are required to perform a procedure such that an object is cooperatively manipulated; in
manufacturing where the need for high level automation is becoming increasingly vital to meet
the demands.  The presented robust algorithm is suitable for both inertially-based problems, as
well as space-based free-floating platforms.

In this project, impedance control (without external force feedback) is utilized to control
individual robotic arms, where a sliding-mode control algorithm is implemented.  In addition to
considerable programming efforts, difficulties encountered in implementation of the proposed
control method include:
  (1) Estimating the upper bound of the uncertainty.
  (2) Solving the K-K-T condition to obtain a force distribution vector.
  (3) Selecting a proper internal force vector.
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Since the admissible solution of case 3 (used in the force distributor) may not satisfy a full set
of grasp conditions, selecting appropriate values for the internal force vector becomes a key
factor for successful coordination control.  It requires trial-and-error procedure.

In this work, the internal force vector Fd  is assumed to have a constant given magnitude. The
internal force, however, is generally a function of (1) the distance (and its derivative) between
contact points and (2) the contact forces (requires a force sensor/identification). It was shown
that control of the internal force is closely related to the grasp stability. Since grasp stability
depends heavily on the geometry of the object and end-effectors, the control of internal force
requires complicated decision making.

Solving an optimization problem with a large number of equality/inequality constraints in real
time is a major computational task.  While we have introduced a new methodology for dual-
arm grasp control, breakthroughs in this area may be possible with greater
availability/reliability of automated differentiation packages.
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