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Abstract

Several fundamental developments in the past decade have led to a better understanding of swept volumes.
While the underlying formulation for characterizing the volume generated as a result of the motion of a
geometric entity in space has appeared in various fields under different names, this review seeks to unify the
terminology and demonstrate the applicability to different fields.  This paper reviews the various
formulations that have appeared, outlines the basic research involved, and highlights the implications on
research in engineering, mathematics, and computer science.  The applicability of this seemingly simple
formulation to the fields of solid modeling, robotics, manufacturing automation, and visualization is
demonstrated through results reported by the authors, each in their own field.
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1.0 Historical Remarks

Attempts were made to obtain the exact swept volume of the motion of a rigid body in space in the early
1960’s using a combination of calculus and graphical techniques. .  We define a swept volume as the volume
generated by the motion of an arbitrary object along an arbitrary path (or even a surface) possibly with
arbitrary rotations. The problem of swept volume determination is concerned with the calculation of
properties associated with the resulting sweep, including the delineation of the boundary for visualization and
computer graphics, formulations for modeling the sweep procedure, and the calculation of the volume’s mass
properties for solid modeling.  Perhaps the most challenging problem facing this field has been the
identification and visualization of the boundary, especially for those volumes that are based on freeform
geometric entities.  The concept of determining the so-called necessary boundary at several steps during the
sweep have been used in early works (although still used today in some implementations), where
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intermediate frames are computed, their necessary boundary identified, and finally all boundaries are
connected (see Fig. 1).

Fig. 1 Sweeping of a geometric entity

While the mathematics used in treating sweep problems have become more sophisticated, the idea remains
the same.  The goal is to determine, mathematically or not, the outer boundary of the object (also called the
generator) during its motion from an initial to a final position and orientation.  The main difficulty has been
(and remains to some extent) the identification of this boundary, obtaining an accurate representation, and the
development of fundamental formulations implementable in computer code.

Although some researchers have investigated what seemed to be efficient methods, they were faced with
problems of visualization because of the limited computational power available at that time.  In fact, the field
of descriptive geometry has addressed similar issues (Wellman 1957).  Until recently, the problem of
computing the swept volume was thought to be hindered by seemingly complex mathematics and the self-
intersection of the generated volume. Many researchers presented solutions varying from implicit approaches
(Klok 1986) to the numerical implicit solutions (Schroeder, et al. 1994 and Ganter, et al. 1993).

Indeed, many have addressed specific problems pertaining to swept volumes.  For example, Kim and Moon
(1990) presented an algebraic algorithm for generating the purely rotational sweeping volumes of planar
objects bounded by algebraic curves. The sweep volume boundary is related to convolutions consisting of the
planar object boundaries at its start and final angles and the circular sweep arcs of radial extreme points.
Parida and Mudur (1994) identified a sufficiently general class of swept objects and have classified the
sweep rules.  Although some believe that swept volume methods employ the similar mathematics to that of
offsets and Minkowski Sums (Elber and Kim 1999, Maekawa 1999, and Ahn, et al. 1997), we believe that
formalisms for addressing swept volumes are very different that those for offsets. A different approach using
a surface fitting algorithm for sweep surface reconstruction from three-dimensional measured data was
presented by Ueng, et al. (1998), but limited to translational sweeping in which the generators traverse about
the directors to form the desired sweep surface.

A formulation for developing a geometric representation of swept volumes for compact n-manifolds
undergoing general sweeps in Rn was presented by Weld and Leu (1990) as an extension of the work by
Wang and Wang (1986). It was shown that the swept volume of a compact n-manifold in Rn is equal to the
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union of the swept volume of its boundary with one location of the compact n-manifold in the sweep. Based
on this formulation, the swept volumes of polyhedral objects were generated from the swept volumes of their
polygonal faces.  The work by Wang and Wang was continued by a colleague of the first author and in
collaboration with a mathematician at NJIT (second author of this paper).

In 1990, Blackmore and Leu introduced a new type of formulation, whereby every smooth Euclidean motion,
or sweep, can be identified with a first-order, linear, ordinary differential equation. The so-called Sweep
Differential Equation (SDE) method provided useful insights into the topological and geometrical nature of
the swept volume of an object and will be further explored below.

Singularity theory (also referred to as Manifold stratification or Jacobian rank deficiency method [Abdel-
Malek and Yeh 1997a and Abdel-Malek and Othman 1999]) was shown to address the determination of the
boundary volume obtained as a result of multiple sweeping (multiple sweeping is a term that denotes the
generation of a volume in space whereby an entity is arbitrarily swept several times adding a number of
sweep parameters to the sweep equation).  It was shown that by an appropriate manipulation of the sweep
Jacobian, it is possible to stratify the Jacobian to obtain exact boundary surface patches in closed form (also
called strata).  The method was expanded in recent years and was shown to address outstanding problems in
robotics, manufacturing automation, and ergonomics.

In the following section, we will first introduce the fundamental concepts associated with sweeping using a
simple examples, will introduce the formulation therein, and will explore both specialized and common
problems associated with sweeping, implementation, and applications.

2.0 Modeling

The fundamental theory of swept volumes is rooted in the Implicit Function Theorem. We first illustrate a
simple example to motivate the discussion. We will then address two formulations that have recently
appeared that treat the problem of swept volumes using (1) Manifold Stratification and (2) Sweep Envelope
Differential Equation (SEDE) method.

2.1 Simple Example:
Consider a given curve specified by the parabola

y x= -4 2  ;  - � �2 1x (1)
shown in Fig. 2, or in parametric form as

G( ) [ ]s s s T
= -4 2 ; - � �2 1s (2)
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Fig. 2 A parabola defined on an interval - � �2 1x

This curve is to be swept in the x-direction along the path given by
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[ ]t T0 ; 0 5� �t (3)
The sweep equation is defined as

x( , ) [ ]s t s t s T
= + -4 2 ; - � �2 1s  and 0 5� �t (4)

This equation represents a sweep in the xy-plane.

In order to define the boundary of this sweep, we substitute the limits for each parameter.  For example,
substituting the limit s=-2 into x( , )s t  yields the equation of a line denoted by l1 defined by [ ]t T

-2 0
on the interval t ³ [ , ]0 5 .  Substituting the limit s=1 yields the line l2  defined as [ ]t T

+1 3  on the same
interval.  Similarly, substituting the limit for t = 0 yields the equation of the original curve denoted by l3

and defined by [ ]s s T4 2
- . Substituting t = 5 yields the parabola after it has translated along the x-axis by

five units as l4  defined by [ ]s s T
+ -5 4 2  also on the interval s³ -[ , ]2 1 .  The plots of l l1 4-  are shown

in Fig. 3.
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Fig. 3 Determination of curves
Two remarks:
(1) Some curves that must be on the boundary are still missing (in particular, the line segment joining the tip

of each curve).
(2) The curves that have been determined thus far may or may not be on the boundary.
To determine the missing curve, one must find the global/local maximum point on the curve in the direction
of sweep (i.e, the tip of the parabola).  In this case, the local and global maximum for the parabola is at
s= 0 obtained by differentiating the curve with respect to s and setting the result to zero.  Substituting s= 0
into the sweep equation yields the curve denoted by l5  and shown in Fig. 4.
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Fig. 4  All curves resulting from the sweep
Once all curves are determined, it is now necessary to identify those curves that are on the boundary by
eliminating all curve segments inside the swept region.  This problem has been denoted by various
designations such as trimming (Blackmore, et al. 1999), boundary identification (Abdel-Malek and Yeh
1997a), and clipping (Madrigal and Joy 1999). For this example, removal of internal curves (those that are



5

not on the boundary) is performed and the result is indeed the swept region shown in Fig. 5 (note that the
term swept volume is typically used even if the region is two-dimensional).
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Fig. 5 The resulting swept region
Note that if the curve above is swept along the y-axis instead, only its endpoints would yield curves and a
maximum cannot be found.   This simple idea can be extended into a generalized formulation by
investigating the Taylor Series expansion of a vector function of several variables denoted by x( )q , where

q = [ ... ]q qn
T

1 , where qi  are the sweep parameters (i.e., q= s t
T

) in the previous example.

x x x( ) ( ) ( ) ( ) . ( ) ( )( )q q q q q q q H q q q= +¶ - + - - +
o o T o o o o R05 (5)

where H is the Hessian of x  and R represents higher order terms.  A change in the function represented by its
gradient is given as

¶ = ¶ - + - - +x x( ) ( ) . ( ) ( )( )q q q q q H q q qo T o o o o R0 5 (6)
If we assume a local minimum then ¶x  must be nonnegative, i.e., ¶ �x 0.  Concentrating only the first-

order term in Eq. (6), we observe (as before) that ¶x can be nonnegative for all possible ( )q q− o  when

¶ =x( )q 0o (7)
In the case of a vector function x( )q , the equivalent of Eq. (b) is

∇ = − +x J q q q( ) ( )o T o R (8)

where J q q= � � =x x  and setting the gradient of a function of several variables to zero is equivalent to

setting the determinant of its square Jacobian matrix J  to zero (i.e., finding a singular point).  Therefore, for
a 3D vector ( x ) with three variables, the Jacobian is a ( )3 3× matrix, whose determinant is an analytic
function.  The complexity in analysis arises when many variables are used to define the sweep (i.e., more
than three variables), resulting in a non-square Jacobian.

In order to have a well-posed formulation, constraints that are used to model the geometry of this problem
should be independent, except at certain critical surfaces in the manifold (Implicit Function Theorem)
where the Jacobian becomes singular. However, for sweeps with more than 3 parameters, the sweep Jacobian
is not square. It is important, therefore, that there not be open sets in the space of the generalized parameters
in which the constraints are redundant.

2.2  Sweep Equations
Consider a surface parameterized in terms of two variables as a ( )3 1×  vector given by G( )u , where

u= u u
T

1 2 .  This surface will be swept along a specified path given by the ( )3 1×  vector Y( )v , where
the orientation of the surface is defined by a ( )3 3�  rotation matrix denoted by R(v).  The sweep equation
generated by the motion of G( )u  on Y( )v  is  defined as

x G Y( , , ) ( ) ( , ) ( )u u v v u u v1 2 1 2= +R (9)
where x  characterizes the set of all points inside and on the boundary of the swept volume.
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To define stationary points (in this case it may be sets of constant parameters or sets of parameters defined as
a function of other variables), consider the derivative of the accessible set (Eq. 9) with respect to time as

& ( )
( )

&x q
q

q=

�
! 

"
$#

∂ξ
∂

i

jq
(10)

where the dot denotes a derivative with respect to time and the matrix

J q
q

( )
( )=

�
!  

"
$##

∂ξ
∂

i

jq
(11)

is called the Jacobian of the sweep (or sweep Jacobian) and has dimension 3 3� .  The left-hand side of Eq.

(10) is the velocity & & &x y z
T

 of a point moving in the swept volume having a parameter velocity vector

&q .  The physical significance of the Jacobian was thoroughly explained and used in the study of the motion
of robot manipulators (Abdel-Malek, et al. 1999a).  In order to determine stationary points, the Jacobian is
studied for rank deficiency.  Because the Jacobian is square, its determinant is equated to zero and solved for
constant values (or expressions) that make the Jacobian singular.  The term singularity (singular set) is given
to those values or expressions.

This Jacobian determinant singularity has been the fundamental underlying theory of the so-called sweep
envelope theory, which has been consistently limited to 3 parameter sweep until recent work by Abdel-
Malek and Yeh (1997a) and Abdel-Malek and Othman (1999).  Early use of envelope theory is attributed to
Dahlberg and Johansson (1987), Flaquer, et al. (1992), and Ganter and Uicker (1986) where it was used by
the latter for detecting collisions and Wang and Wang (1986) where it was demonstrated for simulating the
NC machining process (see the theory by Boltianskii 1964).  Envelope theory was used by Martin and
Stephenson (1989; 1990) to depict the swept volume of simple solids and by Hu and Ling (1994; 1995;
1996) to generate characteristic curves that are the point sets on the boundary of the generator at different
times.  The characteristic curves of the natural quadric surfaces (planes, circular cylinders, circular cones and
spheres) were derived from the envelope theorem, which is also termed the instantaneous screw axis theorem
in the field of kinematics, and it was used to describe the sweep motion of the generators. The faceted model
of a swept volume is then established by warping the corresponding characteristic curves together with the
partial boundaries of the generator at the initial and final positions.

Numerical methods to generate swept surfaces and volumes using implicit modeling techniques were also
reported (Schroeder, et al. 1994). The algorithm reportedly treats degenerate trajectories such as self-
intersections and surface singularity. Applications of this algorithm to maintainability design and robot path
planning were demonstrated.  More recently, still, an expansion of the Jacobian ( )3 3�  singularity, Madrigal
and Joy (1999) swept a Bezier surface to generate a solid of three variables (called a Trivariate Bezier Solid)
and showed that characteristic curves can be computed even for the complex Bezier surfaces (this work will
be explored in more detail in the Solid Modeling section).  Recent works that have demonstrated  methods
for computing swept volumes are (Ling and Chase 1996 and Sourin and Pasko 1996). Other works that are
related to swept volume formulations include ray representation methods (Hartquist, et al. 1999), methods for
handling specific types of sweeping (Jüttler and Wagner 1999), and methods for improving the
approximation of swept volumes (Elber 1997).

To summarize, all of the above methods for formulating the sweep equation or the sweep differential
equation have been able to address very important problems, pertaining to boundary identification,
visualization, and mathematical representation.  However, these methods although they have the potential for
expansion to multiple parameters, have been limited to three parameters.
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2.3  Multi-parameter Sweeps (e.g., multivariate solids)
Using the formalism of shape feature languages, Jakubowski (1993) developed a multiple sweeping method
for product modeling. A geometric entity with more than two parameters (a surface, a volume, or a n-
dimensional entity) parametrized in terms of one or more variables as a ( )3 1×  vector given by G( )u , where

u = [ ... ]u un
T

1 , that is swept in space has also been considered (Abdel-Malek and Othman 1999) using
the a systematic method for consecutive sweep representation adopted from kinematics (Denavit and
Hartenberg 1955).  Multiple arbitrary sweeps are performed to generate a complex solid, the result of which
has been called a multivariate solid (Abdel-Malek and Yang 2000).  Let the path also be defined by Y1 1( )v
and the orientation defined by R1 1( )v  such that the sweep equation is

N q q q q R u1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )= = +x y z v v
T

G Y (12)

where q is the vector of generalized coordinates defined by q = =[ ... ] ...q q u u vn
T

n

T

1 1 1 and

R1 1( )v  is the ( )3 3×  rotation matrix defining the orientation of the swept entity.  In fact, )(1 qN
characterizes the set of all points that belong to the volume.  Another sweep motion with an orientation
R 2 2( )v  and along the path Y2  yields an expanded swept volume in the form of

N q R N q R R R2 2 2 1 2 2 2 1 2 1 2( ) ( ) ( ) ( )= + = + +v vY G Y Y (13)

where now q = [ ... ]u u v vn
T

1 1 2 .  Consecutive sweeps yield a modified set defined by

N R R R R R R3 3 2 1 3 2 1 3 2 3= + + +G Y Y Y (14)

The generalized case yields the vector function x = x x x
( ) ( ) ( )x y z T

, such that
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where q u v= T T T
, u = [ ... ]u un

T
1 , and v = [ ... ]v vm

T
1 .  This is a general sweep of a n-

dimensional geometric entity.  Indeed, a similar sweep equation can be defined as
x G Y( ) ( ) ( ) ( )q R v u v= + (16)

where in this case not only G  has many parameters but the path could also be an m-dimensional entity.  The
significance and need for this formulation is evidenced in problems arising in robotics, solid modeling, and
computer graphics.  For example, consider the robot shown in Fig. 6. The kinematic skeleton of the arm is
shown in Fig. 6b where joints are characterized by q ii ; ,..., =1 4. The vector describing the workspace of a
point P on the end-effector of the manipulator is given by x( )q , where this point has been repeatedly swept
in space and the volume generated by every point touched by the end-effector is called the swept volume or
“workspace” in the field of robotics. In this case, the point P is swept first using the angle q4 , the results of
which is swept again using the angle q3, and subsequently using q2  and q1. The same can be done for any
number of DOF.

    

q2

q1

q3q4

Fig. 6 (a) a robot manipulator (b) the robot’s kinematic skeleton
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2.4  Deformable Sweeps
Stretching, tapering, and twisting, for example, of an object while it is swept is an important subject and that
has become more crucial in recent years for modeling membranes and deformable objects, whether in virtual
reality applications or for educations purposes (e.g., modeling of tissues for medical aplications). For
example, Sealy and Wyvill (1997) reported a method for generating arbitrary sweep objects, where the object
being swept may be a 2D contour or a 3D object. Blackmore et al. (1994) extended the SDE approach from
rigid sweeps to objects experiencing general smooth deformations. To accomplish this, they observed that an
object that is deforming as it is swept along can be modeled by the action of a sweep of the form

x Y( ) ( ) ( ) ( , )x v R x N x= + +v t (17)
where N(x, t) represents a general nonlinear deformation. Here it is useful to note that when the sweep is
rigid, R(t)x + N takes the simple form R(t)x, where R(t) is an orthogonal matrix of determinant = 1. Just as
in the case of a rigid sweep, the above equation for a deforming sweep leads to a corresponding sweep
differential equation (SDE) of the form

d dt d dt d dt d dt P Wx R R x R= + - - +
-

Y Y( ) ( ) ( )1 (18)
where P and W are nonlinear functions associated to the nonlinear portion of the deformation experienced by
the swept object.
Once the appropriate SDE (Blackmore and Leu 1990 and Blackmore, et al. 1994) was derived, Blackmore
and Leu and their collaborators were able to simply replicate the procedures for rigid sweeps in order to
obtain algorithms for the approximate computation of the deforming swept volumes. Very recently Wang et
al. (2000) extended the sweep-envelope differential equation (SEDE) method, developed by Blackmore and
Leu and their associates as an improvement for the SDE, to general deformed swept volumes.

3.0 Formalisms
3.1 Manifold Stratification Method (Jacobian Rank Deficiency)
In differential geometry, a Manifold with singularities is defined as a manifold with singular or boundary
parts of lower dimensions (e.g., 3, 2, and 1).  Because the sweep Jacobian defined by Eq. (11) characterizes
the mapping from 3-space to n-dimensions it is natural to employ stratification (reduction) of the manifold to
many pieces of lower dimensions.  A Stratified space is defined as a toplogical space which is built up from
lower dimensional pieces that are boundaryless manifolds.  Based on singularity theory (Spivak 1968,
Guillemin and Pollack 1974, and Lu, 1976), Abdel-Malek, et al. (1998) and based on earlier reports (Abdel-
Malek and Yeh 1997a; 1997d), were able to show that it is possible to generate the exact boundary envelope
of a swept volume using successive stratification of the manifold. Implementation of Jacobian rank
deficiency conditions yields a subset of a Euclidean space defined by zeros of a finite number of
differentiable functions (called varieties).  As a result, Strata (plural of the Latin word stratum-layer or level)
are defined and used to delineate boundary sub-varieties.  Some other aspects of swept volume geometry
were also recently analyzed using singularity theory in Blackmore et al. (2000).

3.2  Sweep Differential Equation Method and Extensions
An approach to swept volumes that fully exploits the intrinsic geometric and group theoretical structure of
Euclidean motions was first presented by Blackmore and Leu (1990) and later developed in detail in
Blackmore and Leu (1992a). The key element of this approach is the sweep differential equation (SDE) that
is derived from the underlying Lie group structure, which generates the trajectories that determines the
geometry of the swept volumes.

More precisely, the boundary of the swept volume of an object can be shown to be subset of the union of (1)
the grazing points on the boundary of the object during the entire sweep at which the vector field of the SDE
neither points into or out of the object interior, (2) the ingress points at the beginning of the sweep, and (3)
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the egress points on the object boundary. A variant of the characterization for grazing curves for the
generation of swept volumes was recently developed in Chio and Lee (1999).  The grazing points at each
time are computed from a tangency function describing the relationship between the sweep vector ant the
outward normals for points on the object boundary.

One computationally expensive aspect of the SDE method is that, except for the classes of sweeps defined as
autonomous by Blackmore and Leu, the grazing point curves must be computed at every time along the
sweep. In order to overcome this computational difficulty, Blackmore et al. (1997b) developed an extension
of the SDE method that they called the sweep-envelope differential equation (SEDE) approach and presented
examples that illustrate successful integration of a prototype SEDE program with commercial NC
verification software. The authors reported that the major advantages of an algorithm based on the SEDE
method are:
(1)  The grazing points set need only be computed at the initial position of the object - the remaining points

are generated by the SEDE induced flow of the initial grazing points - so the computational complexity
is drastically reduced; and

(2)  It provides automatic connectivity for computed boundary points (along trajectories of the SEDE) that
facilitates integration with standard algorithms and CAD software for visual realization and Boolean
operations.

Algorithms based on the SEDE method have a computational cost that is a full order of magnitude less than
those based on the SDE, making them suitable for real-time application in NC machining verification
problems and related problems in manufacturing automation. The SEDE algorithm, which was originally
developed only for smooth objects, was used together with some novel smooth approximation formulas in
order to calculate the swept volume generated by a general 7-parameter APT tool for a large class of sweeps
that includes all possible motions in 5-axis NC milling processes in Leu et al. (1997). Blackmore et al.
(1997a) later generalized the SEDE method to piecewise smooth objects and Wang, et al. (2000) have just
extended it to deformed swept volumes.

3.3  Parametric, Implicit, and Free Form

Although parametric representations are more widely used and are generally much simpler to treat than
implicit representations, swept volumes are widely used in many applications and it is common in solid
modeling, for example, to represent solids in implicit forms (simpler to use and to store).  In such cases, a
CAD program must have the ability to perform sweep operations on the implicitly represented solid without
converting the equation to parametric form.

In joint work by the first two authors and associates, a new method for exact determination of sweeps of
implicit surfaces was recently presented (Abdel-Malek, et al. 2000a; Abdel-Malek and Yang 2000).  The
method is briefly summarized here for it provides a new approach to the sweep of implicit surfaces.
Consider the sweep equation

x Y G( ) ( ) ( )w R= +t t (19)

where G= [ ,..., ]x xM
T

1  and w x= [ ]T Tt , and where Y and R are, respectively, smooth (=C∞) vector and
matrix valued functions with Y( )0 = 0 , R I( )0 =  is the identity matrix, and R( )t  is a real ( )3 3×
orthonormal matrix (in the case of the M = 3) for every t ∈[ , ]0 1 .  For the purpose of developing the
formulation, it is required only that M be defined as the set of points satisfying finitely many equalities and
inequalities for differentiable functions.
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In order to develop a method that is consistent and general for any implicit surface, we will represent the
surface M by a number of inequalities, with no restriction on the number of inequalities nor on the type of
variables.  Let M be represented by

M f fL U
N
L

N N
U: : ( ) ,..., ( ) ,= � � � �G G G  l l l l1 1 1=  x x x x x xL U

k
L

k k
U

1 1 1≤ ≤ ≤ ≤,...,  A (20)

where f = [ ,..., ]f f N
T

1  and fi ( )G  denotes an expression representing the surface, li  is a limit, the upper
subscript L indicates the lower limit, U denotes the upper limit, N is the number of expressions, and k is the
number of variables.  It should be noted that this is a rather general case, but a surface may be represented by
any number of expressions and any number of variables that may or may not have limits.

As a result of this transformation, it is now possible to define the sweep by
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(21)

where z = =+ + + +x x t z zN N M

T

N M

T

1 1 1 1 2 2,..., , , ,..., ,...,λ λ  or using partitioned coordinates

z w= [ , , ]l l1 2
T  where w = [ ,..., , ]x x tN

T
1 , l1 1= [ ,..., ]λ λ N

T , and l2 1 1= + + +[ ,..., ]λ λN N M
T .  Note that

the parameter t has also been included in F( )z .

Rank deficiency conditions first developed by Abdel-Malek and Yeh (1997a) can now be applied to
determine singular sets of the Jacobian F Fz z z( ) = ∂ ∂  defined by

F

x

l

l

z

w

w

0 0

f f 0

I 0 w

=

�

!
   

"

$
###1

2

(22)

where x xw w= � � ; f f ww = ∂ ∂ ; f f
l

l
1 1= ∂ ∂ ; and w w

l
l

2 2= ∂ ∂ .  The Implicit Function Theorem

mandates that there not be open sets in the space of z in which the constraints are redundant.  Redundancy
occurs when the Jacobian Fz , is rank-deficient which will subsequently define singular surfaces in the

manifold. Singularities as a result of the Jacobian rank deficiency condition are denoted by si .  The example
shown in Fig. 7 was treated using both the SEDE method (Blackmore, et al. 1999) and the Jacobian rank
deficiency method (Abdel-Malek, et al. 2000), where a solid cylinder implicitly defined is swept (with self-
intersection).
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Fig. 7 Two views of the swept volume (same example treated in Blackmore, et al. using SEDE trimming
methods)

3.4  Identifying the Boundary and Clipping Internal Entities (also called trimming)
To illustrate trimming, consider the simple problem of determining the swept volume of a point on the end-
effector of a 2DOF robot manipulator as shown in Fig. 8. Analysis of the equations characterizing the totality
of points touched by point P yields several curves as shown in Fig. 2b.  In order to only depict the boundary
(i.e., the envelope) to this workspace, it is necessary to perform clipping (also called trimming) of the internal
branches.  While this is a simple planar example, this task may prove difficult for complex shapes.  Indeed,
those curve segments that are to be clipped must first be identified. The result of clipping for this example is
shown in Fig. 8c.
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Fig. 8 (a) A 2-DOF robot arm (b) Internal curves as a result of the analysis (c) Trimming curves to delineate
the envelope of the swept area (i.e., the workspace of the robot)

A number of methods have appeared that provide solutions to the trimming problem:

(a)  Surface-surface intersection. It has been shown that the problem of trimming is best treated using mature
surface-surface intersection methods (Bajaj et al. 1988, Barnhill and Kersey 1989, Barnhill, et al. 1987,
Abdel-Malek and Yeh 1996; 1997b), followed by an elimination procedure such as the perturbation
method (Abdel-Malek and Yeh 1997a).  Indeed, Blackmore et al. (1999) implemented efficient surface-
surface methods for both local and global trimming of swept volumes that proved computationally cost
effective when combined with approximate calculation and graphical rendering of swept volumes.

(b)  Z-buffer (see e.g. Wang and Wang (1986) is a well-known efficient technique used in computer
graphics).

(c)  Ray-casting (see e.g. Menon and Voelcker 1992 and Menon and Robinson 1993) is a procedure whereby
a ray is cast from a point inside the swept volume and intersected with all surfaces. Points of intersection
are numbered and their distances computed. Only surfaces with associated points of farthest distance are
kept as they must belong to the boundary of the swept volume.

Blackmore et al. (1999) developed a particularly efficient algorithm for computing swept volumes that
included trimming self-intersections. They first computed a candidate set for the boundary of the swept
volume using the SEDE approach and then used the following method to trim the superfluous points: The
object was characterized by a piecewise smooth function f  that is negative in the interior, positive in the
exterior and zero on the boundary of the object. They then defined the function ϕx(t):= f(η(x, t)), where η
represents the reversed flow induced by the SDE. Global trimming was performed for candidate points x
such that ϕx(t)<0 for some t belonging to the sequence of time steps after local trimming criteria involving
first and second time derivatives of ϕx had been tested. The computational complexity of their algorithm,
including trimming, was shown to be O(m2 log( log m)), where m-1 is a lower bound for the time steps and
the mesh diameter of a triangulation of the boundary of the object.

3.5  Volume and Surface Area Computations

The sweep generation of solid models is a widely accepted technique in dealing with complex shapes
occurring in mechanical components such as turbine blades and bevel gears. A key issue in the geometric
and mechanical analyses of such elements is the accurate and economical computation of their volumetric
properties, namely, their volume, centroid coordinates and inertia tensor.  Al-Daccak and Angeles (1989)
presented a method for the computation of mass properties for sweep-generated solids based only on their 2D
generating contour and their sweeping parameters. The direct 3D calculations of the volumetric properties of
swept volumes were reduced to simple 2D calculations.  The calculation of geometric or mass properties in
CAD systems has been reported in many works (Hoffmann 1989).

Most useful reported techniques for computing the swept volume involve integral identities that convert
volume to surface integrals (see a review by Akin 1990).  Other methods involve filling the solid with known
entities (such as infinitesimal boxes or spheres) to compute the volume.  The most widely known technique
(Olfe 1995) is computed based on a ray casting procedure whereby the total number of cells of each cross-
section is computed using a meshing procedure.  The volume is calculated by summing the individual
material volumes contained in the cells.  An interesting approach to computing the volume of a solid
enclosed by a recursive subdivision surface (Peters and Nasri 1997).
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4.0  Applications
4.1 Numerically Controlled Machining Verification
Numerically controlled machining verification (known as NC verification) of parts prior to manufacturing
leads to higher quality parts and significantly reduced lead times.  NC verification is a very cost-effective
tool.  For NC verification, the method for representing the swept volume removed by a tool as it is
manipulated over the workpiece is sometimes called the cutter-swept surface (CSS).  Seng and Joshi (1998)
proposed a method whereby generated machining volumes are classified using face adjacency relationships
of the bounding faces.  For example, Sheltami, et al. (1998) proposed a technique that is based on identifying
generating curves along the path and connecting them into a solid model of the swept volume.

Parametric representations for the surfaces generated by common NC milling cutters during five-axis
motions were extracted using the theory of envelopes by Sambandan and Wang (1989). Also for 5-axis NC
verification, surfaces swept by a general tool motion, between the initial and terminal tool positions were
represented by several characteristic profiles and parametric definitions of the tool path and orientation
vectors (Narvekar, et al. 1990 and Narvekar and Oliver 1990).

Some of the works that have addressed NC verification without direct use of swept volume methods include
the early work of Voelker and Hunt (1985), Menon and Voelcker (1992), Oliver and Goodman (1990),
Takata,et al. (1992), Jerard and Drysdale (1988), Koren and Lin (1995), Menon and Robinson (1993), Oliver
and Goodman (1990) and Oliver (1990), Ge (1996), Liang, et al. (1997), Liu and Esterling (1997), and Wong
and Wong (1998).  Liu, et al. (1996) presented an exact geometric model of the volume swept by a tool along
a given path.  A swept volume-based milling process simulation system was developed for 3-axis milling of
complex parts (El Mounayri, et al. 1998).  For applications to a toroidal surface, Chung, et al. (1998)
presented a procedure for characterizing the cutter-swept surface (CSS) of a generalized tool in a single
valued form, z = f(x, y).

A representation of swept volumes based on the topological properties of n-dimensional manifolds was
presented by Boussac and Crosnier (1996). The algorithm developed for the evaluation of the boundary
exploits these properties in such a way that the n-dimensional object  (swept volume) is generated only from
the (n-1)-dimensional components resulting from a family of deformations.

More recently, Abdel-Malek, et al. (2000b) modeled the motion of a cutter tool as a surface undergoing a
sweep operation along another geometric entity.  A topological space describing the swept volume is built as
a stratified space with corners.  It was shown that varieties appearing inside the manifold representing the
removed material are due to a lower degree strata of the Jacobian.  Some of the varieties addressed are
complicated but can be shown to be reducible because of their parametrization.  Figure 9 illustrates material
removal. Electric discharge machining has become one of the most accurate machining used for the
production of complex manufactured parts.
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Fig. 9 (a) Tool and workpiece         (b) Material removed (swept volume)
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The SDE approach was also applied to 5-axis milling in Leu et al. (1995).  Blackmore et al. (1994) later
generalized the SDE method to deforming swept volumes and applied this to the analysis of deforming
cutting tools in 3-axis NC machining in Leu et al. (1998) and the 5-axis machining of sculptured surfaces in
Leu et al. (1999). In both of these applications the deformed swept volume analysis accounts for cutter
deflections and how they affect the resulting objects created by NC machining of simple workpieces.

4.2  Robot Analysis
Swept volumes have been shown to effectively depict the workspace (sometimes called the accessible output
set) of serial robot manipulators.  These studies are important for understanding robot functionality,
dexterity, and their location with respect to targets in a working environment, more importantly their design.
Figure 10b, for example, is the workspace of the 4 degree of freedom (4 parameters) shown in Fig. 10a.
Only a cross section of the workspace for this 4DOF manipulator was determined by Haug, et al. (1996)
using a numerical approach (Fig. 10c).  It is evident that the swept volume formulation provides a broadly
applicable solution to robotic analysis and allows for the determination of the exact boundary and
visualization of the volume.
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(a) A 4DOF RPRP manipulator (b) The Workspace  (c) A cross-sectional plane
Fig. 10 Application of swept volumes to robot analysis

Similarly, real-time motion planning for robots in flexible manufacturing systems (FMS) was addressed by
Li and Ma (1996) and Li (1995).  Swept volumes were also used in combination with a temporal interval
search technique, to compute a series of viewpoints for monitoring a simulated robot operation (Abrams and
Allen 1993; 1995).  Early works using numerical techniques were presented by Kumar and Waldron (1981)
and Kumar (1985) via tracing boundary surfaces of a robot workspace.  Tsai and Soni (1981) studied
accessible regions of planar manipulators, while Gupta and Roth (1982) and Gupta (1986) studied the effect
of hand size on workspace analysis.  Other studies on the subject of manipulator workspaces were reported
by Sugimoto and Duffy (1982), and Davidson and Hunt (1987), Agrawal (1990), Gosselin and Angeles
(1990),  Emiris (1993), and Yeh (1996).  Zhang, et al. (1996) presented a graphical representation of
kinematic workspaces. While all these cited references have addressed the sweep of the manipulator’s end-
effector, they have been limited to a small number of DOF and are apparently unable to obtain exact surface
patches on the boundary. Pennock and Kassner (1993) presented a numerical algorithm for the study of a
planar three degree-of-freedom manipulator.

Blackmore et al. (1992b; 1992c) also used the SDE approach to classify swept volumes of robot links in two
and three dimensions. Equations for general sweeps are derived with the use of homogeneous matrices for
representing position and orientation of an object. The corresponding sweep differential equations are
obtained from the general sweeps. The tangency condition is used to classify the swept volume of a link
element as one of type I or type II.
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Numerical criteria were formulated to find the workspace (called the accessible output set) of a general
multi-degree-of-freedom system using continuation methods to trace boundary curves suitable for the study
of both open- and closed-loop manipulators (Haug et al. 1996 and  Luh et al. 1996).  The initial criteria for
this computational method were presented by Haug et al. (1992) and Wang and Wu (1993). A comparison
between the exact method of swept volume computation presented by Abdel-Malek and Yeh (1997a) and the
numerical technique used in the above works was jointly presented in a comparative paper by Abdel-Malek,
et al. (1997).

Singular manifolds (i.e., geometric entities inside the swept volume) in joint space were addressed by Pai and
Leu (1992), Burdick (1991; 1992), and Chevallereau and Daya (1994) and Chevallereau (1996).  Concepts of
crossable and noncrossable surfaces inside a manipulator’s workspace were first addressed by Oblak and
Kohli (1988).

Exact determination and visualization of the workspace using Jacobian rank deficiency methods was
presented by Abdel-Malek, et al. (1997a).  Because of the ability to parameterize surface patches on the
boundary, it was shown that path trajectory verification could be performed (Abdel-Malek and Yeh 1997c)
and placement of the manipulator in its environment to obtain maximum dexterity (Abdel-Malek 1996). The
workspace of the manipulator shown in Fig. 11 also has voids (regions inside the workspace that cannot be
reached).  More recently, control difficulties of the manipulator’s end-effector were also addressed (Abdel-
Malek and Yeh 2000).
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Fig. 11 (a) A four DOF robot  (b) Singular surfaces of the workspace (swept volume)

Cecarelli (1995) used an algebraic formulation of a workspace boundary to formulate design equations of
three-revolute (3R) jointed manipulators and 4R manipulators (Cecarelli and Vinciquerra 1995) and was also
treated by Abdel-Malek, et al. (1999) using the Jacobian rank deficiency method (shown in Fig. 12).  All the
specified constant angles for this example are π 3 . Only the cross-section was obtained by the first  authors
using a geometric method for toroidal sweeping.
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4.3  Solid Modeling and the Trivariate Freeform Solid
The representation of complex solids using sweep methods has been limited by the difficult mathematics and
computational complexity in high-fidelity realistic algorithms. Although some commercial CAD systems
offer very limited sweep operations, this type of solid modeling is far from being used on a realistic basis
because of the delicate mathematics associated with it. Figure 13 shows a self-intersecting model of a sphere
moving along a figure 8 surface depicted using the Jacobian rank deficiency method (Abdel-Malek and Yeh
1997a).

-1

0

1
-1

0

1

-1

0

1

-1

0

1

-1

0

1

Fig. 13 Solid modeling obtained by sweeping a spherical surface along an 8-shaped surface

The trivariate tensor-product B-spline solid (Casale and Stanton, 1985, Farouki and Hinds, 1985, and Lasser,
1985) is a direct extension of the B-spline patch and has been shown to be useful in the creation and
visualization of free-form geometric solids.  The trivariate B-spline solid is defined by a set of
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or ],,[ 11 11 −−∈ nm uuu ],,[ 11 22 −−∈ nm vvv and ],[ 113 −−∈
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trivariate tensor-product B-spline normalized blending functions defined by the knot sequences, and
,1m ,2m 3m  are the orders of the spline in each of the parametric variables.  A simple B-spline solid is

shown in Fig. 14.

Fig. 14: A cubic trivariate Bézier solid.  The solid is defined by 64 control points, shown in blue.  The
boundary faces are the images of the boundaries of the domain interval.

The trivariate B-spline solid can be considered to be a swept solid, where the generator is a bivariate B-spline
patch that continuously changes when being swept along a curve.  Here, the B-spline patch is defined by
taking any two of the three parameter values of the trivariate solid, and the curve can be defined by the third
coordinate.

The B-spline solids have two important features regarding their computation.  First, each solid can be refined
or subdivided by a trivariate adaptation of the B-spline subdivision algorithm (Boehm, 1980).  In the case of
the B-spline solid, it can be subdivided in any parameter direction, creating two trivariate B-spline solids
whose union is the original one. This property allows the researcher to develop “divide-and-conquer”
algorithms to be used for computation on the solids.  For example, a B-spline solid may be
refined/subdivided into a set of Bézier solids (B-splines with simplified knot sequences) whose union is the
original solid (see Farin, 1993).  Bounds on the partial derivatives can be obtained using the cone
approximations of Sederberg and Parry (1988), Sederberg and Meyers (1988), Kim and Moon (1990), or
Kim, et al. (1993).

Visualization of trivariate B-spline solids was first demonstrated by Joy (1991), Reus, et al. (1992), and Joy
and Duchaineau (1999).   Visualizing these solid objects requires the determination of the boundary surface
of the solid, which is a combination of parametric and implicit surfaces.   The parametric portion of the
boundary is defined as a direct image of the boundary of the domain space, and the implicit portion of the
boundary is defined when the Jacobian determinant of the defining function is zero.  Joy and Duchaineau
(1999) have utilized the Sederberg-Meyers cone approximations to the partial derivatives of the trivariate
spline function to establish an interval bound on the Jacobian determinant for a given rectangular cell of the
domain space.  If zero is not in the interval bound for a given cell, the implicit boundary does not exist in the
cell and the trivariate solid can be accurately represented by the images of the bounding faces of the cell.
Alternatively, if zero is in the interval bound, the cell is subdivided.  Isosurface methods (Lorensen, 1987,
Wyvill and McPheeters, 1986, and Shu, 1995) are used to create the surface in a cell where the Jacobian
determinant vanishes.
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Fig. 15: A trivariate solid approximating a sweep.  The picture on the left shows the model with only the
boundary face patches, where the picture on the right shows the complete solid.

Joy (1992) and Joy and Madrigal (1999) have utilized two methods to approximate the envelope surface of a
swept trivariate B-spline solid. Joy and Madrigal (1999) utilize envelope theory to approximate the swept
surface.  At a set of points along the path, a characteristic curve was calculated on the envelope, “zippering”
these curves to create a polygonal representation of the swept solid.  Figure 16 (a) illustrates a complex
trivariate B-spline generator, and Figs. 16 (b) and (c)  illustrate the results of sweeping this generator along
two different paths.

        
Fig. 16  (a) A trivariate B-spline solid (b) The swept solid defined by sweeping the generator along a spiral

curve (c) Sweeping the generator along a spiral curve (with rotations)

4.4 Human Factors (Ergonomics)
Significant attention in recent years has been given to obtaining a better understanding of human joint ranges,
measurement, and functionality, especially in conjunction with commands issued by the central nervous
system, this research plays a useful role in ergonomic design processes. It has been reported that impaired
arms exhibit well-defined workspace deficits as measured by the assisted rehabilitation and measurement
(ARM) Guide (Reinkensmeyer, et al. 1999).  Researchers have used rigorous kinematic formulations and
swept volume technology to model human limbs, understand their workspace, delineate barriers therein
where a trajectory becomes difficult to control, and help visualize these barriers.  For example, consider
modeling the motion of the human arm kinematically as shown in Fig. 17a.  The resulting workspace (given
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appropriate ranges of motion) is shown in Fig. 17b imposed on the human arm showing the torso (Abdel-
Malek, et al. 2000c).  The workspace of the index finger, for example, shown in Fig. 18 below is used in the
layout design of buttons, levers, and hand tools.
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Fig. 17 (a) Joints of the shoulder and elbow are considered (b) Workspace of the hand with respect to the
shoulder
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Fig. 18  The workspace of the index finger used in the design of hand tools

Other Applications
In many applications, the motion of objects must be designed such that collision does not occur.  Techniques
for interference detection that are based on 2-D projections of swept volumes were reported in the early
1990’s (Kieffer and Litvin 1990; 1991).  Algorithms for the determination of part-removal paths, creation of
swept volumes, and representation of large models for interactive visualization were reported by Law, et al.
(1998) and were integrated into one system called Galileo.  The system is used for maintainability analysis.
Xavier (1997) presented an efficient method for computing the exact distance and interference detection for
translationally-swept objects. The method was subsequently adapted for rotationally swept objects and
reported accurate collision detection.   Swept volume technology was also used in Penstroke modeling (Kim,
et al. 1993).
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Challenges
While the fundamental mathematical foundation for treating swept volumes seems to converge onto rigorous
mathematics adapted from Singularity Theory, it is evident that the level of complexity is high. As a result,
the main stream of researchers addressing problems pertaining to swept volumes, even in the diverse fields
discussed above, has been limited by the difficulty in implementing such algorithms in computer code.
Although some commercial mechanical computer aided design codes have limited capability for sweeping,
usually in the form of extrude or revolve, it will be some time before a general sweep operation will be
available.  By general sweep, we mean the ability to repeatedly sweep an object in space to define a complex
swept solid.  Moreover, while concrete steps have been taken towards the visualization of multivariate solids,
substantial effort must be focused on simplifying the mathematical complexity so as to facilitate computer
implementation.

5.0  Conclusions
The state-of-the art in the analysis of swept volumes has been presented with emphasis on applications and a
review of previous work. Modeling and analysis methods were explored to some extent but were limited to
the theoretical foundation rather than the implementation scheme.  Challenging applications in diverse fields
of manufacturing automation, robotics, solid modeling, and human motion simulation were addressed.  It is
evident that the topic of swept volumes remains a challenging subject from the standpoint of obtaining faster
implementations, better visualization, and more accurate approximations of their boundaries. Nevertheless,
there are now solid foundations based upon rigorous mathematics that have and will continue to foster
expansion of the breadth of swept volume analysis.
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