TRANSPORT PHENOMENA 052:144

Learning Experience I
 February 14, 2002
 Closed Book Exam

1. Let $\boldsymbol{u}=2 \mathbf{i}-3 \mathbf{j}+4 \boldsymbol{k}, \boldsymbol{v}=y x \mathbf{j}+y^{2} \mathbf{i}$ and $\boldsymbol{D}=y \mathbf{i} \mathbf{k}+z \mathbf{j k}$ (\boldsymbol{D} is a second rank tensor). Compute the following quantities in (RCCS) at $(x, y, z)=(1,2,3)$. Indicate whether the result is a scalar, vector or second rank tensor.
a. $\boldsymbol{u} \times \boldsymbol{D}$
b. $v \cdot \nabla$
2. The Laplacian, $\nabla \cdot \nabla(\cdot)$, is often written as $\nabla^{2}(\cdot)$ or even as $\Delta(\cdot)$. Show in RCCS whether or not the following is a correct relationships, $\Delta \vec{u}=\nabla(\nabla \cdot \vec{u})-\nabla \times(\nabla \times \vec{u})$.
3. When Dr. Smooth measured the velocity flow field for an incompressible fluid in her new device, she obtained $\vec{v}=4 y z \vec{i}+8 x z \vec{j}-12 z y \vec{k}$. She is concerned about her instrumentation. Should she be? Why or why not?
4. Acceleration is usually written as $\vec{a}=\frac{\partial}{\partial} \vec{v}+\vec{v} \cdot \nabla \vec{v}$. However, Professor Rodgers argued that this is the same as $\vec{a}=\frac{\partial}{\partial t} \vec{v}+(\nabla \vec{v}) \cdot \vec{v}$. Is he correct? Use RCCS to show.
