Transport Phenomena 052:217
 Confidence Builder I

February 17, 2005

Closed Book Exam

1.(30) Let $\vec{u}=\vec{\delta}_{i}+\vec{\delta}_{j}+\vec{\delta}_{k}, \vec{v}=-2 x y \vec{\delta}_{i}+2 z y \vec{\delta}_{j}$ and $\overrightarrow{\vec{D}}=x y \vec{\delta}_{i} \vec{\delta}_{k}+x z \vec{\delta}_{j} \vec{\delta}_{k}$. Prove or disprove $\nabla \cdot(\vec{u} \vec{v})=\vec{u}(\nabla \cdot \vec{v})+\vec{v}(\nabla \cdot \vec{u})$ for arbitrary values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
2.(30) The gradient of a function, f, that describes a surface is often used to calculate the normal to that surface. This is true since the gradient of f is a vector oriented perpendicularly to the $f(x, y, z)=a^{2}$ surface with contains the position vector, and which points toward larger f.
Letting $f(x, y, z) \equiv x^{2}+(y-a)^{2}+z^{2}=a^{2}$. Determine the normal, \vec{n}, of the surface at the point $\left(a \frac{\sqrt{3}}{2}, \frac{a}{2}, 0\right)$. Remember, the normal has a magnitude of one.
3.(40) Starting with the total derivative of a scalar $f(r, \theta, \phi)$ in spherical coordinates and the position vector, derive ∇f for spherical coordinates.

Spherical Coordinates

$$
\begin{aligned}
& \frac{\partial}{\partial \theta} \vec{\delta}_{\theta}=-\vec{\delta}_{r} \quad \frac{\partial}{\partial \theta} \vec{\delta}_{r}=\vec{\delta}_{\theta} \quad \frac{\partial}{\partial \phi} \vec{\delta}_{\theta}=\vec{\delta}_{\phi} \cos \theta \quad \frac{\partial}{\partial \phi} \vec{\delta}_{r}=\vec{\delta}_{\phi} \sin \theta \\
& \frac{\partial}{\partial \phi} \vec{\delta}_{\phi}=-\vec{\delta}_{r} \sin \theta-\vec{\delta}_{\theta} \cos \theta
\end{aligned}
$$

