

PROJECT: STEEL BUILDING DESIGN CASE STUDY SUBJECT: FILL BEAM SELECTION		SHEET 111 of
INTERIOR FLOOR FILL BEAM (continued)		
SELECT SECTION		
LRFD p5-40-Choose	W24x62	
Beam Weight (k/ft)	0.062	<than 85 plf assmd, sheet6
$\mathrm{Mu}=$	301.0	(k-ft)
$\phi \mathrm{Mp}=$	578	(k-ft)
	OK	- $\dagger \mathrm{Mp}>\mathrm{Mu}$?
CHECK LOCAL CONDITIONS		
$\mathrm{b}_{\mathrm{f}} / 2 \mathrm{t}_{\mathrm{f}}($ LRFD $\mathrm{p} 1-17)=$	5.97	
$\lambda p=65 / \mathrm{Fy}^{.}=$	9.2	
	OK	- $\lambda p>b_{f} / 2 t_{f}$?
CHECK WEB		
$\mathrm{h} / \mathrm{tw}($ LRFD p1-17 $)=$	49.7	
$\lambda p=640 / \mathrm{Fy}^{5}=$	90.5	
	OK	$4-\lambda p>h / t w ?$
CHECK SHEAR CAPACITY		
$\mathrm{Vu}=\mathrm{Wu}{ }^{*} \mathrm{~L} / 2 \mathrm{P}^{*} \mathrm{a} / \mathrm{L}=$	26.4	
$\phi V n=\phi_{v}\left(0.6 F_{y w}\right) A_{w}\left(F_{y w}=\right.$ yield strength of web $)=$	226.8	$\left(\phi_{v}=.9\right)$
$A_{w}=d^{*} t_{w}($ LRFD $p 1-16)=$	8.4	
$\mathrm{d}=24 \mathrm{tw}=0.4$		
	OK	- $\mathrm{LVn}^{\text {l }}>\mathrm{Vu}$?

LIVE LOAD DEFLECTION CHECK

$$
\Delta \max =\mathrm{L} / 360=\quad 1.200 \quad \text { (in) }- \text { LIMIT }
$$

Deflection at Mmax :

$\Delta($ Wu1 $)=W^{*} a^{\wedge} 2{ }^{*}(L-x)^{*}\left(4^{*} L^{*} x-2^{*} x^{\wedge} 2-a^{\wedge} 2\right) /\left(24^{*} E^{*} I^{*} L\right)=0.555$
$\Delta(W u 2)=W^{*} a^{\wedge} 2^{*}(L-x)^{*}\left(4^{*} L^{*} x-2^{*} x^{\wedge} 2-a^{\wedge} 2\right) /\left(24^{*} E^{*} I^{*} L\right)=0.262$

SECTION OK

NOTE -- The fill-beam has a combination of several uniform and partially distributed loads and 2 concentrated loads. The dead load for the floor and stair is uniformly distributed as well as the floor live load. The CMU dead load is only particially distrubuted along the length of the member PLUS $1 / 2$ of the distance along the header (the fill beam picks up half this load). This fill-beam also picks up 2 partially distributed live loads for the floor and stair. There is one concentrated dead and live load at the point where the header frames into the fill beam.

SECTION OK

$$
\begin{array}{cc}
\text { Cost Per Ton } & 1950 \\
\text { Total Cost } & \$ 2,176.20
\end{array}
$$

PROJECT: STEEL BUILDING DESIGN CASE STUDY SUBJECT: FILL BEAM SELECTION		SHEET 113 of 131
INTERIOR FLOOR FILL BEAM (continued)		
SELECT SECTION		
LRFD p5-40-Choose	W21x83	
Beam Weight (k/ft)	0.083	<than 85 plf assmd, sheet6
$\mathrm{Mu}=$	332.6	(k-ft)
¢Mp =	735	(k-ft)
	OK	- $\dagger \mathrm{Mp}>\mathrm{Mu}$?
CHECK LOCAL CONDITIONS		
$\mathrm{b}_{\mathrm{f}} / 2 \mathrm{t}_{\mathrm{f}}($ LRFD $\mathrm{p} 1-17)=$	5	
$\lambda p=65 / \mathrm{Fy}^{5}=$	9.2	
	OK	4 - $\lambda p>b_{f} / 2 t_{f}$?
CHECK WEB		
$\mathrm{h} / \mathrm{tw}($ LRFD p1-17) $=$	36.4	
$\lambda p=640 / \mathrm{Fy}^{5}=$	90.5	
	OK	- $\lambda p>h / t w ?$
CHECK SHEAR CAPACITY		
$\mathrm{Vu}=\mathrm{Wu}{ }^{*} \mathrm{~L} / 2 \mathrm{P}^{*} \mathrm{a} / \mathrm{L}=$	29.9	
$\phi V n=\phi_{v}\left(0.6 F_{y w}\right) A_{w}\left(F_{y w}=\right.$ yield strength of web $)=$	226.8	$\left(\phi_{v}=.9\right)$
$A_{w}=d^{*} t_{w}($ LRFD $p 1-16)=$	8.4	
$\mathrm{d}=21 \mathrm{tw}=0.5$		
	OK	$4 \mathrm{~L}^{4} \mathrm{Vn}>\mathrm{Vu}$?

LIVE LOAD DEFLECTION CHECK

$$
\Delta \max =\mathrm{L} / 360=\quad 1.200 \quad \text { (in) }- \text { LIMIT }
$$

Deflection at Mmax:

SECTION OK

NOTE -- The fill-beam has a combination of several uniform and partially distributed loads and 2 concentrated loads. The dead load for the floor and stair is uniformly distributed as well as the floor live load. The CMU dead load is only particially distrubuted along the length of the member PLUS $1 / 2$ of the distance along the header (the fill beam picks up half this load). This fill-beam also picks up 2 partially distributed live loads for the floor and stair. There is one concentrated dead and live load at the point where the header frames into the fill beam.

SECTION OK

Cost Per Ton 1950
Total Cost $\quad \$ 2,913.30$

Note: Fill beam for this bay will be the same on the 2nd and 3rd floors. On the 4th and roof use interior fill beams determined previously for this bracing beam. The beam is necessary to laterally brace the W 24×68 framing beam. The beam is part of the North/South lateral load-resisting truss. A plate is added to brace the bottom flange against buckling out-of-plane.

