
1

57:017, Computers in
Engineering
Review of C Functions

Motivation for Functions
Real world programs often are large and complex
Easier to manage in smaller pieces, like modules
or, in the case of C, functions

Example of a “divide and conquer” strategy p q gy
Each function solves one small part of the entire problem

C programs written by combining new functions
with C standard library functions

Have already been using these: printf(), scanf(), sqrt()

Five Reasons for Modularizing
Programs

Divide-and-Conquer: Build programs from small,
simple pieces.
Software Reusability: Use existing modules as
building blocks to create new programs.
A id ti C dAvoid repeating Code
Easier to Debug: Each module can be debugged
separately.
Easier to Maintain: Can make changes to a
specific module rather than the whole program, i.e.,
optimizing a function for speed or reducing its
memory requirements.

Basic Idea of a Function
Consider mathematical functions:

y = f(x), where f(x) = ?
Need some definition for f(x)

defines the value of f(x) for any value of x() y
f(x) requires an argument, or parameter, x
f(x) produces a value that is assigned to y

Can use this function with any legal value
substituted for x—e.g. y = f(5)

C functions work the same way
Of course, we must follow the C syntax rules

Function Prototype
To implement a function like f(x) in C:

/* Function prototype: Describes the name of the function,
the type of value it returns (the output), and the type
of values that are sent to it (the arguments) */
int f(int k); function prototype

int main () {
int x, y;
…
y = f(x);
…

}
/* Function definition: Shows how to do the actual

computation */
int f(int k){

return (k + 1);
}

Elements of a C Function
Function Prototype

Declares the “signature” of the function
the number and type of its parameters,
what type of value it returns

Function Call
Actually makes use of the function
Real values are specified for arguments

Function Definition
Reusable code that can be called whenever needed
Complete definition consists of function name, input
parameters, return data type, local variables, C operations,
return value

2

C Function Example
Computes the largest among three given integers
int maximum(int x, int y, int z) {

int max;
max = x;
if (y > max) {y

max = y;
}
if (z > max) {

max = z;
}
return max;

} //end of function maximum()

Using This Function in a
Program

int maximum(int x, int y, int z); // prototype

int main() {
int num1, num2, num3, biggest;

printf(“Enter three integers:\n”);printf(Enter three integers:\n);
scanf(“%d%d%d”, &num1, &num2, &num3);

biggest = maximum(num1, num2, num3);

printf(“The largest value entered was: %d\n”, biggest);
return 0;

}

/* function definition from previous slide goes here */

Local variables in Functions
Local variables

Declared in function definitions
Known only in function they are defined

Parameters
Provide means of communicating information and
calling context
These are also local variables (known only within
the function)

Function Prototypes
Used by compiler to validate function calls
Tells compiler information about the function

Type of data returned by function
Number of parameters function expects to receive
Types of parameters
Order in which parameters are expected

Used to prevent improper function calls and catch errors at
compile time
Example
#include <math.h> tells preprocessor to copy contents of the
file math.h into the program
math.h contains function prototypes for C math library functions

Function Header
starts the function definition
Format of a function definition:
return-value-type function-name(parameter-list){
local variable declarations
statements

}
Parameters are in a comma-separated list
Contains the declarations for parameters
A data type must be specified for each parameter
If a function does not receive any values, its parameter list
is void:

denoted as: (void) or ()

Function Body
The set of declarations and statements
within braces (much the same as in the
main() program)
Also called a block
Block

A group of statements (instructions) that may
include variable declarations at the beginning
Blocks can be nested one inside another
But a function cannot be defined inside another
function

3

Function Return Value

In the function prototype and header, a return-value
type of void indicates that the function does not return
a value
IF the return-value-type is unspecified, it is always
assumed by the compiler to be int
The program returns from a function call (e.g. transfers
control back to the point at which the function call
occurred) in one of three ways

1. Reaching the function-ending right brace
2. Executing the statement: return;
3. Executing the statement: return expression;

The first two above are suitable only if the function’s
return type is: void

Header Files
Header files typically contain

Function prototypes
Definitions of various data types
Constants needed by those functions

Programmer can create custom header filesg
Files should end in .h
Use #include to have header file copied into a program
E.g.
#include "mySquare.h“
“filename” indicates the file is in the same directory as
the program being compiled (recall that <filename>
indicates that the file is in the operating system’s standard
include directory—usually /usr/include)

Parameter Passage

Arguments can be passed to functions in two
different ways:

Call by value
Call by referenceCall by reference

Call by Value
Arguments are passed by making a copy of the
argument’s value

Copy is then passed to function
Changes to the parameter within the function do not
affect the value of the variable used as the argument in
the calling program

Use when:
Called function does not need to modify the value of the
caller’s original value

Prevents accidental side effects if variables are changed
inside the function

Call by Value Example
#include <stdio.h>
int byValueSquare(int x);

int main() {
int y,z;
y = 5;
z = byValueSquare(y);
printf(“After function call, y=%d, z=%d\n”, y, z);p (, y , \ , y,);
return 0;

}

int byValueSquare(int x) {
x = x * x;
return x;

}

Output:
After function call, y=5, z=25

Call by Reference
Address of argument is passed to the function
The called function can then modify the argument
variable’s value
Should only be used by “trusted” called functionsShould only be used by trusted called functions
In C, parameters are passed by value
However, can simulate call by reference using
address operators and indirection operators (i.e.
pointers - more later)

4

Call by Reference Example
#include <stdio.h>
int byRefSquare(int *x);

int main() {
int y, z;
y = 5;
z = byRefSquare(&y);
printf(“After call to function, y=%d, z=%d\n”, y, z);p t (te ca to u ct o , y %d, %d\ , y,);
return 0;

}

int byRefSquare(int *x) {
*x = *x * *x;
return *x;

}

Output:
After call to function, y=25, z=25

Note: This function has
an undesirable side effect—i.e.
in addition to computing the
square of the argument, it
modified the value of the
argument. Call-by-value should
have been used here to avoid
this side effect.

Call by Reference Example

int byRefSquare(int *x) {
*x = *x * *x;
return *x;

}}

Read this from right to left as:
x is an address of an integer
*x is an integer
Substitute the word “address” for the asterisk

Call by Reference Example
#include <stdio.h>
int byRefSquare(int *x);

int main() {
int y, z;
y = 5;
z = byRefSquare(&y);

parameter type is
“pointer to integer”

“&” is the “address of” operator. Hence,
argument is “address of y”

printf(“After call to function, y=%d, z=%d\n”, y, z);
return 0;

}

int byRefSquare(int *x) {
*x = *x * *x;
return *x;

}
Output:
After call to function, y=25, z=25

“*” is the indirection operator.
Read as: “The location whose
address is x” or “the location
pointed to by x”

