57:017, Computers in
Engineering
Review of C Functions

Motivation for Functions

e Real world programs often are large and complex
e Easier to manage in smaller pieces, like modules
or, in the case of C, functions
o Example of a “divide and conquer” strategy
e Each function solves one small part of the entire problem
e C programs written by combining new functions
with C standard library functions
» Have already been using these: printf(), scanf(), sqrt()

Five Reasons for Modularizing
Programs

e Divide-and-Conquer: Build programs from small,
simple pieces.

e Software Reusability: Use existing modules as
building blocks to create new programs.

e Avoid repeating Code

e Easier to Debug: Each module can be debugged
separately.

e Easier to Maintain: Can make changesto a
specific module rather than the whole program, i.e.,
optimizing a function for speed or reducing its
memory requirements.

Basic Idea of a Function

e Consider mathematical functions:
y = f(x), where f(x) = ?
o Need some definition for f(x)
defines the value of f(x) for any value of x
o f(x) requires an argument, or parameter, X
o f(x) produces avalue that is assigned to y

Can use this function with any legal value
substituted for x—e.g. y = f(5)

e C functions work the same way
o Of course, we must follow the C syntax rules

Function Prototype

e Toimplement a function like f(x) in C:

/* Function prototype: Describes the name of the function,
the type of value it returns (the output), and the type
of values that are sent to it (the arguments) */

int f(int k); «———— function prototype

int main Q {
int x, y;

y = F0O5

/* Function definition: Shows how to do the actual
computation */
int f(int k){
return (k + 1);

Elements of a C Function

e Function Prototype
« Declares the “signature” of the function
the number and type of its parameters,
what type of value it returns
e Function Call
o Actually makes use of the function
» Real values are specified for arguments
e Function Definition
» Reusable code that can be called whenever needed

o Complete definition consists of function name, input
parameters, return data type, local variables, C operations,
return value

C Function Example

e Computes the largest among three given integers
int maximum(int x, int y, int z) {
int max;
max = X;
if (y >max) {
max = y;
}
if (z > max) {
max = z;
¥
return max;
} //end of function maximum()

Using This Function in a
Program

int maximum(int x, inty, int z); // prototype

int mainQ) {

3

int numl, num2, num3, biggest;

printf(“Enter three integers:\n”);
scanf(“%d%d%d”, &numl, &num2, &num3);

biggest = maximum(numl, num2, num3);

printf(“The largest value entered was: %d\n”, biggest);
return O;

/* function definition from previous slide goes here */

Local variables in Functions

e Local variables

o Declared in function definitions

e Known only in function they are defined
e Parameters

o Provide means of communicating information and
calling context

o These are also local variables (known only within
the function)

Function Prototypes

e Used by compiler to validate function calls
e Tells compiler information about the function
« Type of data returned by function
» Number of parameters function expects to receive
o Types of parameters
o Order in which parameters are expected
e Used to prevent improper function calls and catch errors at
compile time
e Example

o #include <math.h> tells preprocessor to copy contents of the
file math . h into the program

« math.h contains function prototypes for C math library functions

Function Header

starts the function definition

Format of a function definition:

return-value-type function-name(parameter-list){
local variable declarations
statements

}

Parameters are in a comma-separated list

Contains the declarations for parameters

A data type must be specified for each parameter

If a function does not receive any values, its parameter list

is void:

o denoted as: (void) or)

Function Body

e The set of declarations and statements
within braces (much the same as in the
main() program)

e Also called a block

e Block
o A group of statements (instructions) that may

include variable declarations at the beginning
o Blocks can be nested one inside another

e But a function cannot be defined inside another
function

ecee
o0

Function Return Value

soeo0oe
eseoe

e In the function prototype and header, a return-value
type of void indicates that the function does not return
avalue

e IF the return-value-type is unspecified, it is always
assumed by the compiler to be int

e The program returns from a function call (e.g. transfers
control back to the point at which the function call
occurred) in one of three ways
o 1. Reaching the function-ending right brace
e 2. Executing the statement: return;

« 3. Executing the statement: return expression;

e The first two above are suitable only if the function’s

return type is: void

Header Files S

e Header files typically contain
« Function prototypes
« Definitions of various data types
e Constants needed by those functions
e Programmer can create custom header files
o Files should endin .h
o Use #include to have header file copied into a program
o E.g.
#include "mySquare.h*

o “Filename” indicates the file is in the same directory as
the program being compiled (recall that <fi lename>
indicates that the file is in the operatinlg system’s standard
include directory—usually Zusr/include)

Parameter Passage

e Arguments can be passed to functions in two
different ways:
e Call by value
o Call by reference

Call by Value

e Arguments are passed by making a copy of the
argument’s value
e Copy is then passed to function

e Changes to the parameter within the function do not
affect the value of the variable used as the argument in
the calling program

e Use when:
« Called function does not need to modify the value of the
caller’s original value
Prevents accidental side effects if variables are changed
inside the function

Call by Value Example

#include <stdio.h>
int byValueSquare(int x);

int mainQ) {
int y,z;
y = 5;
z = byValueSquare(y);
printf(“After function call, y=%d, z=%d\n”, y, z);
return O;

hs

int byValueSquare(int x) {
X = X * X;
return Xx;

3

Output:
After function call, y=5, z=25

Call by Reference

e Address of argument is passed to the function

e The called function can then modify the argument
variable’s value

e Should only be used by “trusted” called functions
e In C, parameters are passed by value

e However, can simulate call by reference using
address operators and indirection operators (i.e.
pointers - more later)

Call by Reference Example

#include <stdio.h>
int byRefSquare(int *x);

int mainQ) {
inty, z;
y = 5;
z = byRefSquare(&y);
printf(“After call to function, y=%d, z=%d\n”, y, z);
return O;

by

int byRefSquare(int *x) {

*y = Ky K Ky

Note: This function has

an undesirable side effect—i.e.
in addition to computing the
square of the argument, it

return *x; modified the value of the
} argument. Call-by-value should
have been used here to avoid
Output: this side effect.

After call to function, y=25, z=25

Call by Reference Example

int byRequuare {

T Sl &

return *x;

}

Read this from right to left as:

X is an address of an integer

*x is an integer

Substitute the word “address” for the asterisk

Call by Reference Example

#include <stdio.h> _— parameter type is
int byRequuar; “pointer to integer”

int main(Q) {
inty, z; “&" is the “address of” operator. Hence,
y = 5; argument is “address of y”
z = byRequuar;
printf(“After call to function, y=%d, z=%d\n”, y, z);
return 0;

bs

“*" s the indirection operator.

1 1 *

int byRefSquare(int *x) { Read as: “The location whose

@ address is x” or “the location
return *x; pointed to by x”

3

Output:
After call to function, y=25, z=25

