
1

57:017, Computers in
Engineering—C Structures
and Typedefs

Structures

C structures are collections of related variables
May contain variables of many different types

Compared to arrays. . .
Similar in that one variable holds several values togetherg
Different in that arrays can only contain elements of the
same data type

Commonly used to define
records to be stored in files

Structures are derived data types
They are constructed using objects of other types

Structure Definition
Example: An employee record:
struct empRec {

char *lastName;
char *firstName;char firstName;
int age;
float salary;

};

Allows all of the information about an employee to
be aggregated under one variable

More Detailed Explanation
Keyword struct introduces the structure
definition
The structure tag is the identifier empRec

Structure tag names the structure definition
Used with the keyword struct to declare variables of the y
structure type

The structure type is: struct empRec
Structure definition must end with a semicolon
Note that the preceding example does not declare
any variables.

It just defines the type of a structure named empRec

Structure Members

The structure members are the fields
declared within the braces of the structure
definition

In this case: lastName firstName ageIn this case: lastName, firstName, age,
salary

Members must have unique names
But two different structure definitions may
include members with the same name

More About Structure
Members

Structure members can be variables of:
Basic data types such as int, float, char
Arrays
Other structures (other than itself)

Structure member can not beStructure member can not be
variables of the same structure type
but could be pointers to the same type

Important: A structure definition does not declare
any variables or reserve any space in memory
It creates a new data type that can, in turn, be used
to used to declare variables

2

Placement of Structure Definitions
Structures may be defined outside of main()
struct card {

char *face;
char *suit;

};
int main() {int main() {
/* main code goes here */
}
This definition can then be used anywhere in the file
Alternatively a structure definition can be placed
inside of the body of main() or another function

In this case, the definition is local to the function in which it
occurs.

Declaring Structure Variables
Declared just like variables of other data types
Example:
struct card {

char *face;
char *suit;

};
int main() {
struct card a, deck[52], *cPtr;

…
}
This declaration declares:

a to be a variable of type struct card
deck to be an array of 52 elements of type struct card
cptr to be a pointer to a variable of type struct card

Declaring Structure Variables
int main() {

struct card a;
struct card deck[52];
struct card *cPtr = & a;

…
}

What is going on in
the computer memory?

Address Value
6000 unknown
6004 unknown

cPtr->face, a.face

cPtr->suit, a.suit

6008 unknown
6012 unknown
6016 unknown
6020 unknown
…..
6416 unknown
6420 unknown
6424 6000
6428

deck[0].face

deck[0].suit
deck[1].face

deck[1].suit

deck[51].face

deck[51].suit
cPtr

struct card {
char *face;
char *suit;

};

Declaring Structure Variables
int main() {

struct card a;
struct card deck[52];
struct card *cPtr = & a;

a.face = (char *) malloc(sizeof(char)*5);
strncpy(a.face,”five”,4);
a.face[4]=‘\0’;

…
}

What is going on in
the computer memory?

Address Value
6000 8000cPtr->face, a.face

6004 unknown
…..
6424 6000
…..
8000 ‘f’
8001 ‘i'
8002 ‘v’
8003 ‘e’
8004 ‘\0’

cPtr->suit, a.suit

cPtr struct card {
char *face;
char *suit;

};

malloc returns address 8000
and reserves the next 5 bytes
to hold character data

Structure Operations

Structure operations include . . .
Structure assignments
Address (&) operator
Accessing membersAccessing members
Using sizeof operator

NOT comparing structures
Why not?

Initializing Structure Variables
Structure variables can be initialized like arrays
Example:

struct card {
char *face;
h * ichar *suit;

};
struct card a = {"Three", "Hearts“};

Creates a variable a of type struct card
– Initializes the member face to point to a character
string "Three"
– Initializes suit to "Hearts"

3

Structure Variable
Initialization--Continued
If there are fewer elements in the initializer list
than members

Numerics members are initialized to 0
Pointers are initialized to NULL

A structure variable may also be initialized by:
Assigning a structure variable of the same type:
struct card b = a; /* copies all

members of a to b*/
Assigning values to the individual members of the
structure

Accessing Members
Two operators used to access members of
structure variables:

Structure member operator, or dot (.)
Structure pointer operator, or arrow (->)
t t d * Ptstruct card a, *aPtr;

aPtr = &a;
…
printf("%s ", a.suit);
printf("%s ", aPtr->suit);
printf("%s ",(*aPtr).suit);

What’s the difference?

Explanation of Syntax

a.suit
evaluates to the value stored in suit

aPtr->suit
evaluates to the value stored in suitevaluates to the value stored in suit

(*aPtr).suit
aPtr points to the entire structure a
When aPtr is dereferenced, it contains the value
of a and hence can access its member suit

Hence all three are equivalent

Passing Structure Variables as
Parameters to Functions

Can pass structure variables to functions by
passing:

Individual structure members
an entire structure
a pointer to a structure

Default is pass by value
In order to pass a structure variable by reference,
must pass a pointer to the structure variable (just
like pass-by-reference for any other variable)

Note: Arrays of structures, like all other arrays, are
automatically passed by reference

Function Example
Prints structure variable two ways

Passing the entire structure variable to a function
(by value)
Passing a pointer to the structure variable to a
functonfuncton

One is call by value and the other is call by
reference
Note: Passing a structure as a parameter is
different than passing an array

default is pass-by value for a structure variable

Function Example
#include <stdio.h>

struct student {
char *name;
int number;
char grade;

};

void printStudent1(struct student);void printStudent1(struct student);
void printStudent2(struct student *);

main() {
struct student stud1 = {"Bob", 52329, ’B’};
struct student stud2 = {"Jill", 02134, ’A’};

printStudent1(stud1); /* Pass in structure */
printStudent2(&stud2); /* Pass in pointer to it*/

}

Continued on next slide:

4

void printStudent1(struct student st) {
/* Note: st is NOT a pointer but actual

structure */
printf("student’s name is %s\n", st.name);
printf("student’s number is %d\n", st.number);
printf("student’s grade is %c\n", st.grade);

}}

void printStudent2(struct student *st) {
printf("student’s name is %s\n", st->name);
printf("student’s number is %d\n", st->number);
printf("student’s grade is %c\n", st->grade);

}

Another Function Example

Illustrates the difference between:
Passing structure variables by value
Passing structure variables by reference

P i t t t i bl b f d ftPrints structure variable before and after
calls to various modifyStuden() functions

Second Example
#include <stdio.h>

struct student {
char *name;
int number;
char grade;

};

void printStudent1(struct student);
void modifyStudent1(struct student);
void modifyStudent2(struct student *);

main() {
struct student stud1 = {"Bob", 52329, ’B’};
struct student stud2 = {"Jill", 02134, ’A’};
printf("Before modifyStudent1 function call\n");
printStudent1(stud1);

continued on next slide

modifyStudent1(stud1);
printf("After modifyStudent1 function call\n");
printStudent1(stud1);

printf("Before modifyStudent2 function call\n");
printStudent1(stud1);
modifyStudent2(&stud1);modifyStudent2(&stud1);

printf("After modifyStudent2 function call\n");
printStudent1(stud1);

} //end of main()

Continued on next slide

void modifyStudent1(struct student st) {
st.name = "Bill";
st.number = 94305;
st.grade = ’F’;

}

void modifyStudent2(struct student *st) {
st->name = "Bill";
st->number = 94305;
t > d ’F’st->grade = ’F’;

}

void printStudent1(struct student st) {
/* Note: st is NOT a pointer but actual structure */
printf("student’s name is %s\n", st.name);
printf("student’s number is %d\n", st.number);
printf("student’s grade is %c\n", st.grade);

}

Typedefs
Provides a way for creating “synonyms” or “aliases”
for previously defined data types
Names of structure types are often defined with
typedef to create shorter type names
Example
typedef struct card Card;

Makes the new type name Card that can be used in place
of the name struct card

Note: typedef does not create a new type but
rather a new name for an existing type

5

Another way of using typedef:
Can create a structure type so a structure tag
is not required
Example
typedef struct {typedef struct {

char *face;
char *suit;

} Card;
Creates the structure type Card without
need for a separate typedef statement

Using a typedef to Declare
Variables

Now we can use the typedef Card to declare
variables of type struct card
Example:p
Card deck[52]; /* Creates an array

of 52 card structures*/

Benefits of using typedef

Meaningful names help make programs self
documenting
Often typedef is used to create synonyms
for the basic data types toofor the basic data types, too
Example
typedef *char charPointer;

Creates new name for type *char

