

Consider the XOR Truth Table

The University of Iowa
Intelligent Systems Laboratory

Example 2 (i1, i2) $=(1,0)$

$$
04=1
$$

$01=1,02=0$
$\mathbf{a}_{3}=\mathrm{w}_{2} \times \mathbf{0}_{1}+\mathrm{w}_{3} \times \mathbf{o}_{2}=1 \mathrm{x} 1+1 \mathrm{x} 0=1$
$\begin{aligned} & \text { Input node } \\ & \text { Threshold }\end{aligned}=0.02$

$\mathrm{a}_{4}=\mathrm{w} 1 \times 01+\mathrm{w}_{5} \times 03+\mathrm{w} 4 \times 02=-1 \times 1+2 \times 1+-1 \times 0$
$=1$
$\mathrm{o}_{4}=1$
Input node
Threshold $=$
Threshold $=0.02$

$$
\text { Input } i_{2}-n 2 \underbrace{w 3=1}_{\text {w } 4=-1}
$$

| The University of Iowa | Intelligent Systems Laboratory |
| :--- | :--- | :--- |

Fuzzy (Sigmoid) Activation Function

$\mathrm{Oi}_{\mathrm{i}}=\frac{1}{1+\mathrm{e}^{-\alpha\left(\sum \text { Weight } \times \text { Input }-\theta\right)}}$
where $\begin{cases}\alpha & \text { the degree of fuzziness (constant during training) } \\ \theta & \text { the }\end{cases}$ θ the threshold level (its value changes)

The University of Iowa
Intelligent Systems Laboratory

Backpropagation Learning: Basic

 Concepts 1

Page 2

Backpropagation Learning: Basic Concepts 2

$$
\delta=0.5 \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{t}_{\mathrm{k}}-\mathrm{o}_{\mathrm{k}}\right)^{2}
$$

$\delta_{\mathrm{k}}=$ error occurring in the output layer k

The University of Iowa
Intelligent Systems Laboratory

Step 3. Weight training
(a) The error gradient (gradient of the activation function x error of the neuron output) is completed as follows.
For the output neurons:

$$
\begin{equation*}
\delta_{j}=o_{j}\left(1-o_{j}\right)\left(d_{j}-o_{j}\right) \tag{2}
\end{equation*}
$$

where d_{j} is the desired (target) output activation and o_{j} is the actual output activation at output neuron j.
For the hidden neurons:

$$
\delta_{j}=o_{j}\left(1-o_{j}\right) \sum_{k} \delta_{k} W_{k j}
$$

where δ_{k} is the error gradient at neuron k to which a connection points from hidden neuron j .
(b) The weight adjustment is computed as

$$
\Delta \mathrm{w}_{\mathrm{ji}}=\eta \delta_{\mathrm{j}} \mathrm{o}
$$

where η is a trial-independent learning rate $(0<\eta<1)$ and δ_{j} is the error gradient at neuron j .
证
The University of Iowa
Intelligent Systems Laboratory

Example

Back-Propagation Network for Learning the XOR Function with Randomly Generated Weights

The Back-Propagation Learning Algorithm

Step 1. Weight initialization
Set all weights and node thresholds to small random numbers
Step 2. Calculation of output levels
(a) The output level of an input neuron is determined by the instance presented to the network.
(b) The output level o_{j} of each hidden and output neuron is determined

$$
\begin{equation*}
\mathrm{o}_{\mathrm{j}}=\mathrm{f}\left(\sum \mathrm{w}_{\mathrm{ji}} \mathrm{o}_{\mathrm{i}}-\theta_{\mathrm{j}}\right)=\frac{1}{1+\mathrm{e}^{-\alpha\left(\sum \mathrm{w}_{\mathrm{i}} \mathrm{o}_{\mathrm{i}}-\theta_{\mathrm{j}}\right)}} \tag{1}
\end{equation*}
$$

where w_{ij} is the weight from input $\mathrm{o}_{\mathrm{i}}, \alpha$ is a constant, θ_{j} is the node threshold, and f is a sigmoid function.

IIII. The University of Iowa
Intelligent Systems Laboratory
(c) Start with the output neuron and work backward to the hidden layers recursively Adjust weights by

$$
\begin{equation*}
\mathrm{w}_{\mathrm{ji}}(\mathrm{t}+1)=\mathrm{w}_{\mathrm{ji}}(\mathrm{t})+\Delta \mathrm{w}_{\mathrm{ji}} \tag{5}
\end{equation*}
$$

where $w_{j i}(t)$ is the weight from neuron i to neuron j at iteration t and $\Delta w_{j i}$ is the weight adjustment.
(d) Perform the next iteration (repeat Steps 2 and 3) until the error criterion is met, i.e., the algorithm converges. An iteration includes: presenting an instance, calculating activation levels, and modifying weights.

```
The University of Iowa
```

Intelligent Systems Laboratory

Step 1. The weights are randomly initialized as follows: $\mathrm{w}_{13}=0.02, \mathrm{w}_{14}=0.03, \mathrm{w}_{12}=$ $0.02, \mathrm{w}_{23}=0.01, \mathrm{w}_{24}=0.02$
Step 2. Calculation of activation levels: Consider a training instance (the fourth row from the XOR table) with the input vector $=(1,1)$ and the desired output $=0$. From the figure,

$$
\begin{aligned}
& \mathrm{o}_{3}=\mathrm{i}_{3}=1 \\
& \mathrm{o}_{4}=\mathrm{i}_{4}=1
\end{aligned}
$$

From equation (1) for $\alpha=1$ and $\theta_{\mathrm{j}}=0$

$$
\mathrm{o}_{2}=1 /\left[1+\mathrm{e}^{-(1 \times 0.01+1 \times 0.02)}\right]=0.678
$$

$$
\mathrm{o}_{1}=1 /\left[1+\mathrm{e}^{-(0.678 \times(-0.02)+1 \times 0.02+1 \times 0.03)}\right]=0.509
$$

The University of Iowa
Intelligent Systems Laboratory

Step 3. Weight training : Assume the learning rate $\delta=0.3$	
Eq. $2 \quad \delta_{j}=o_{j}\left(1-o_{j}\right)\left(d_{j}-o_{j}\right)$	$\delta_{1}=0.678(1-0.678)(0-0.678)=-0.148$
Eq. $4 \quad \Delta \mathrm{w}_{\mathrm{j}}=\eta \delta_{\mathrm{j}} \mathrm{o}_{\mathrm{i}}$	$\Delta \mathrm{W}_{13}=0.3(-0148) \times 1=-0.044$
Eq. $5 \quad \mathrm{w}_{\mathrm{ji}}(\mathrm{t}+1)=\mathrm{w}_{\mathrm{ji}}(\mathrm{t})+\Delta \mathrm{w}_{\mathrm{ji}}$	$\mathrm{w}_{13}=0.02-0.044=-0.024$
Eq. $2 \quad \delta_{j}=o_{j}\left(1-o_{j}\right) \sum_{k} \delta_{k} \mathrm{w}_{\mathrm{kj}}$	$\delta_{2}=0.678(1-0.678)(-0.148)(-0.02)=0.0006$
From $\Delta_{w_{j i}}=\eta \delta_{j} \mathrm{o}_{\mathrm{i}}$	$\Delta \mathrm{w}_{23}=0.3 \times 0.0006 \times 1=0.00018$
From $\mathrm{w}_{\mathrm{ji}}(\mathrm{t}+1)=\mathrm{w}_{\mathrm{ji}}(\mathrm{t})+\Delta \mathrm{w}_{\mathrm{ji}}$	$\mathrm{w}_{23}=0.01+0.00018=0.01018$
$\mathrm{fil\mid}_{\text {fily }}^{\text {L }}$ The University of Iowa	Intelligent Systems Laboratory

The Previous Network with New Weights

Page 4

