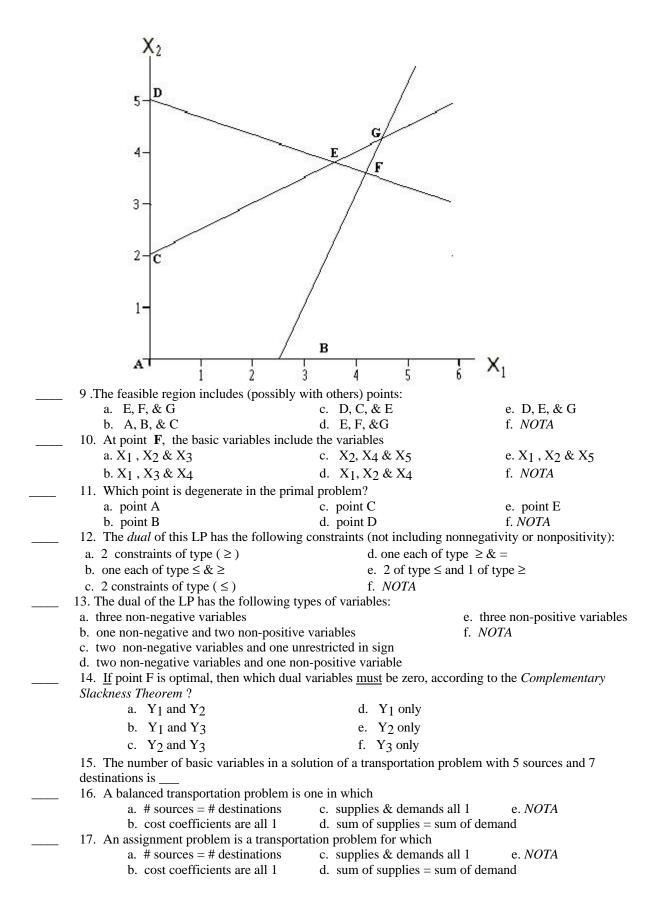
▼▲▼▲▼▲▼	56:171 Operations Research	▼▲▼▲▼▲▼
▲▼▲▼▲▼▲	Final Examination	
▼▲▼▲▼▲▼	December 15, 1999	▼▲▼▲▼▲▼


• Write your name on the first page, and initial the other pages.

• Answer both Parts A and B, and 4 (out of 5) problems from Part C.

• Answer boin	Faris A ana B, ana 4 (oui of S) problems from Fari C	·•	
		Possible	Score
Part A:	Miscellaneous multiple choice	17	
Part B:	Sensitivity analysis (LINDO)	14	
Part C:	1. Discrete-time Markov chains I	15	
	2. Discrete-time Markov chains II	15	
	3. Continuous-time Markov chains	15	
	4. Integer Programming Models	15	
	5. Dynamic programming	15	
	total possible:	88	

VAVAVAV PART A VAVAVAV

Multiple Choice: Write the appropriate letter (a, b, c	, d, etc.) : (<i>NOTA</i> = \underline{N} one <u>of</u> the <u>a</u> bove).
	oblem (min cx st Ax \geq b, x \geq 0), there is zero slack in
constraint #1, then in the optimal dual solution,	
	ck variable for dual constraint #1 must be zero
b. dual variable #1 must be positive d. du	
	LP problem (min cx subject to: $Ax \ge b$, $x \ge 0$), dual variable
#2 is positive, then in the optimal <i>primal</i> solutio	
	ack variable for constraint #2 must be zero onstraint #2 must be slack e. <i>NOTA</i>
\therefore variable #2 must be positive d . d	
5	
5 5	$C_{ij} < U_i + V_j \qquad e. C_{ij} = U_i - V_j$
	$C_{ij} + U_i + V_j = 0 \qquad f. NOTA$
	e matrix of transition probabilities. The sum of each
a. column is 1 c. row is 1	e. <i>NOTA</i>
b. column is 0 d. row is 0 5. In a birth/death process model of a queue, the	
a. have the Beta distribution c. be co	
	the exponential distribution e. <i>NOTA</i>
6. In an M/M/1 queue, if the arrival rate = $\lambda < \mu$	1
a. $\pi_0 = 1$ in steady state c. $\pi_i > 0$ f	
с	in steady state f. NOTA
Č.	f the simplex method, the solution in the next tableau
a. will be nonbasic	c. will have a worse objective value
a. will be nonfeasible	d. will be degenerate e. <i>NOTA</i>
8. An absorbing state of a Markov chain is one in	6
	oving out of that state is one.
b. moving into that state is one. d. mo	oving into that state is zero e. <i>NOTA</i>
The problems (9)-(12) below refer to the following LP:	
	(with inequalities converted to equations:)
Maximize $3X_1 + 5X_2$	Maximize $3X_1 + 5X_2$
subject to $2X_1 - X_2 \le 5$	
	subject to $2X_1 - X_2 + X_3 = 5$
$\begin{array}{c} x_1 + 3X_2 \leq 15 \end{array}$	$X_1 + 3X_2 + X_4 = 15$
-	$X_1 + 3X_2 + X_4 = 15$
$X_1 + 3X_2 \le 15$	

Sensitivity Analysis in LP.

Zales Jewlers uses rubies and sapphires to produce two types of rings. A type 1 ring requires 2 rubies, 3 sapphires, and 1 hour of jeweler's labor. A type 2 ring requires 3 rubies, 2 sapphires, and 2 hours of jeweler's labor. Each type 1 ring sells for \$400, and each type 2 ring sells for \$500. All rings produced by Zales can be sold. At present, Zales has 100 rubies, 120 sapphires, and 70 hours of jeweler's labor available. Extra rubies can be purchased at a cost of \$100 each. Market demand requires that the company produce at least 20 type 1 rings and at least 25 type 2 rings. To maximize profit, Zales should solve the following LP:

```
X1 = type 1 rings produced.
         X2= type 2 rings produced
         \mathbf{R} = number of rubies purchased.
                MAX z=400X1 + 500X2 - 100R
                s.t. 2X1 + 3X2 R \le 100
                    3X1 + 2X2
                                ≤ 120
                     X1 + 2X2
                                \leq 70
                     X1
                                \geq 20
                          X2
                                \geq 25
                X10, X20, R0
The LINDO output for this problem follows:
  MAX
          400 X1 + 500 X2 - 100 R
  SUBJECT TO
               2 X1 + 3 X2 - R <=
                                    100
         2)
              3 X1 + 2 X2 <= 120
         3)
              X1 + 2 X2 <= 70
         4)
         5)
              X1 >= 20
         6)
              X2 >=
                       25
  END
     OBJECTIVE FUNCTION VALUE
1)
        19000.00
  VARIABLE
                                  REDUCED COST
                  VALUE
                                   .000000
                  20.000000
        X1
        X2
                  25.000000
                                        .000000
                  15.000000
                                        .000000
         R
       ROW
             SLACK OR SURPLUS
                                   DUAL PRICES
        2)
                    .000000
                                    100.000000
                                       .000000
                  10.000000
        3)
                    .000000
                                    200.000000
        4)
        5)
                     .000000
                                       .000000
        6)
                    -.000000
                                    -200.000000
 RANGES IN WHICH THE BASIS IS UNCHANGED:
                            OBJ COEFFICIENT RANGES
 VARTABLE
                  CURRENT
                                  ALLOWABLE ALLOWABLE
                   COEF
                                  INCREASE
                                                   DECREASE
       X1
               400.000000
                                   INFINITY
                                                   100.000000
               500.000000
                                 200.000000
       х2
                                                     INFINITY
        R
               -100.000000
                                 100.000000
                                                   100.000000
                            RIGHTHAND SIDE RANGES
      ROW
                  CURRENT
                                  ALLOWABLE
                                                    ALLOWABLE
                                  INCREASE
                                                   DECREASE
                    RHS
        2
               100.000000
                                  15.000000
                                                    INFINITY
               120.000000
        3
                                  INFINITY
                                                    10.000000
        4
                70.000000
                                   3.333333
                                                     .000000
        5
                                   .000000
                20.000000
                                                     INFINITY
        6
                25.000000
                                    .000000
                                                     2.500000
```

THE TABLEAU			
ROW X1 X2 R	SLK 2 SLK 3 SLK 4	SLK 5 SLK 6	RHS
1 ART .000 .000 .000 1		.000 200.000	19000.000
2 X2 .000 1.000 .000	.000 .000 .000	.000 -1.000	25.0000
3 SLK 3 .000 .000 .000	.000 1.000 -3.000	.000 -4.000	10.000
4 R .000 .000 1.000	-1.000 .000 2.000	.000 1.000	15.000
5 X1 1.000 .000 .000	.000 .000 1.000	.000 2.000	20.000
6 SLK 5 .000 .000 .000	.000 .000 1.000	1.000 2.000	.000
1. Suppose that instead of \$100, ea		-	
a. Yes	b. No	c. Cannot be	
2. What is the most that Zales wou	ld be willing to pay for anothe	r hour of jeweler's time	? Choose nearest
answer:			
a. nothing	b. \$50	c. \$100	
d. \$150	e. \$200	f. Cannot be	e determined
3. Your answer in (2) is valid for u	p to how many additional hou	rs? Choose nearest ans	wer:
a. zero	b. 1 hour	c. 2 hours	
d. 3 hours	e. four hours	f. Cannot be	e determined
4. Consider the labor availability c	onstraint, after it is transforme	d by LINDO into equati	on form:
X1 + 2X2 (+/-?) SL	K 4 = 70		
What sign should SLK 4 have i	n this equation?		
a. Plus	b. Minus		
5. If we wished to determine the effective statement of the effective		additional hour of iewe	ler's time were
available, we would the			
a. increase	b. decrease		
6. If the variable SLK 4 were to in		ng to the substitution rat	es the number of
rubies purchased would	crease by T nour, then accordin	ig to the substitution fut	es, the number of
a. increase	b. decrease	c. remain the	e same
7. If the variable SLK 4 were to in			
	crease by 1 nour, men accordin	ig to the substitution rat	es, the number of
type 2 rings made would	1 1	• .1	
a. increase	b. decrease	c. remain the	
8. If the variable SLK 4 were to de	crease by I hour, then accordi	ng to the substitution rat	tes, the number of
type 1 rings made would			
a. increase	b. decrease	c. remain the	
9. Suppose that instead of \$500, ea		profit of \$400 each. Wo	ould Zales reduce the
number of such rings produced?			
a. Yes	b. No	c. Cannot be	e determined
<u>10.</u> Suppose that instead of $$500, \epsilon$	ach type 2 ring were to have a	profit of \$600 each. W	ould Zales increase
the number of such rings produc		-	
a. Yes	b. No	c. Cannot be	e determined
	0.1.0	2. 2	

VAVAVAV PART C VAVAVAV

1. **Discrete-Time Markov Chains I:** The Minnesota State University admissions office has modeled the path of a student through the university as a Markov Chain:

	Freshman	Sophomore	Junior	Senior	Quits	Graduates	
Freshman	0.10	0.80	0	0	0.10	0	
Sophomore	0	0.10	0.85	0	0.05	0	
Junior	0	0	0.12	0.80	0.08	0	
Senior	0	0	0	0.10	0.05	0.85	
Quits	0	0	0	0	1.00	0	
Graduates	0	0	0	0	0	1.00	

Each student's state is observed at the *beginning of each fall semester*. For example, if a student who is a junior at the beginning of the current fall semester has an 80% chance of becoming a senior at the beginning of the next fall

semester, a 15% chance of remaining a junior, and a 5% chance of quitting. (We will assume that a student who quits never re-enrolls.)

Powers	of	P:
--------	----	----

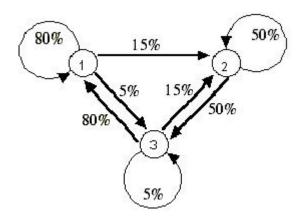
POwers of P.		\ 1	2	3	4	5	6	
$P^2 =$		m 1 0.01 2 0 3 0 4 0	0.16 0.01	0.68 0.187 0.014 0	 0	0.15 0.123	0 6 0.6	
2		0.0	01 0.0	 2176	4 0.544 0.2176			6 0 0.578
$P^3 =$	3 0 4 0 5 0 6 0	0 0 0 0	0 0		0.02912 0.001 0 0		55	.8296 0.9435 0 1
\setminus	1	2		3	4		5	6
$P^{4} = \begin{array}{c} \text{from} ^{-} \\ 1 0 \\ 2 0 \\ 4 0 \\ 5 0 \\ 6 0 \end{array}$		0.0001 0	0.00	45628)20736	0.04651	2 0. 44 0.1	18586 L41140 05555	8 0.4624 5 0.76296 5 0.854352 0.94435 0 1
Absorption Probabilities .	Α:		0.279 0.189 0.141	9113 1414	6 0.720788 0.810887 0.858586 0.944444	7 5		
Expected # of Visits E=			(3 54 0.953 1 1.073 1.136 0	323 0 536 1	4 .84798 .95398 .0101 .1111	84
Select the nearest a <u>1</u> . The number a. 0	-							elow. g. <i>NOTA</i>
b. 1		d. 3			f. 5			5. 110111
2. The number of a. 0 b. 1 3. The number of		c. 2 d. 3			e. 4 f. 5			g. NOTA
a. 0 b. 1		c. 2 d. 3			e. 4 f. 5			g. <i>NOTA</i>
4. The closed sets of a. {1}	i states l	d. {4		-11a111 1110	g. {1,2		-	j. {2,3,4 }
b. {2 } c. {3 }		e. {5 f. {6	}			,3,4 }		k. $\{3,4\}$ l. $\{1,2,3,4,5,6\}$

5. The minimal closed sets of states in this Markov chain model are (circle all that apply!)

a. {1}	d. {4}	g. {1,2,3,4 }	j. {2,3,4 }
b. {2}	e. {5}	h. {1,2,3,4 }	k. {3,4}
c. {3}	f. {6}	i. {5,6}	1. {1,2,3,4,5,6}

Suppose that at the beginning of the Fall '99 semester, Joe Cool was a Freshman.

6. What is the pr	obability that Joe is a	a junior in Fall 20	001? (choose near	est answer)
a. 10%	c. 30%	e. 50%	g. 70%	i. 90%
b. 20%	d. 40%	f. 60%	h. 80%	j. 100% k. Not sufficient info.
7. What is the pr	obability that Joe is a	a senior in Fall 20	002? (choose near	est answer)
a. 10%	c. 30%	e. 50%	g. 70%	i. 90%
b. 20%	d. 40%	f. 60%	h. 80%	j. 100% k. Not sufficient info
8. What is the pr	obability that Joe fir.	st becomes a ser	nior in 2003? (cho	ose nearest answer)
a. 5%	c. 15%	e. 25%	g. 35%	i. 45%
b. 10%	d. 20%	f. 30%	h. 40%	j. 50% k. Not sufficient info
9. What is the pr	obability that Joe eve	entually graduate	es? (choose neares	st answer)
a. 10%	c. 30%	e. 50%	g. 70%	i. 90%
b. 20%	d. 40%	f. 60%	h. 80%	j. 100% k. Not sufficient info
10. What is the e	expected length of his	s academic caree	r, in years? (choos	se nearest answer)
a. 3 year	c. 4 years	e. 4.5 years	g. 5 years	i. 5.5 years Not sufficient info
b. 3.75 year	s d. 4.25 years	f. 4.75 years	h. 5.25 years	j. ≥5.75 years
11. What fraction	n of students graduat	e in exactly four	years? (choose ne	arest answer)
a. ≤25%	c. 35% e. 45%	g. 55% i. 6	55% k. 75%	m. 85% o. Not sufficient info
b. 30%	d. 40% f. 50%	h. 60% j. 7	1. 80%	n. ≥90%


- **2. Discrete-time Markov Chains II:** On New Year's Eve (December 31) of each year I determine whether my car is in good, fair, or broken-down condition. If my car is broken-down, I replace it on January 1st with a good used car.
 - A good car will be good at the end of next year with probability 80%, fair with probability 15%, or broken-down with probability 5%.
 - A fair car will be fair at the end of the next year with probability 50%, or broken-down with probability 50%.
 - It costs \$10,000 to purchase a good used car; a fair car can be traded in for \$3000; and a broken-down car can be sold as junk for \$500.
 - It costs \$1000 per year to operate a good car and \$1500 to operate a fair car. If a car breaks down during a year, the operating cost averages \$2000.

Assume that the cost of operating a car during a year depends on the type of car on hand at the *beginning* of the year, and that any break-down occurs only at the *end* of a year.

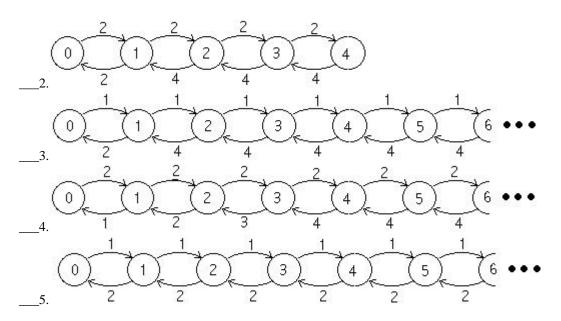
My policy is to drive my car until it breaks down, at which time I replace it with a good used car. Define a

- Markov chain model representing the condition of the car which I own on Dec. 31, with three states:
- 1. Good condition
- 2. Fair condition
- 3. Broken-down

The diagram below indicates the transition probabilities:

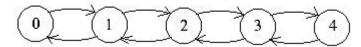
Below are the $2^{\text{nd}},\ 3^{\text{rd}},\ \&\ 4^{\text{th}}$ powers of P:

below are one 2 , 5 , a 1 powerb of 1				
$P^2 = \langle 1 \rangle 2 \rangle 3 \rangle P^3 = \langle 1 \rangle 2 $ from $ from from $	$3 P^4 = 1 2 3$			
1 0.6375 0.2025 0.16 1 0.598125 0.220875	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
2 0.375 0.325 0.3 2 0.50625 0.26375 3 0.6375 0.2025 0.16 3 0.598125 0.220875	0.23 $2 0.552100$ 0.242515 $0.20550.181$ $3 0.584344$ 0.227306 0.18835			
5 0.0575 0.2025 0.10 5 0.590125 0.220075	5 0.101 5 0.304344 0.227300 0.10035			
Mean 1 st passage times				
\setminus 1 2 3				
from				
1 1.73333 6.66667 5.2				
2 3.73333 4.33333 2				
3 1.73333 6.66667 5.2				
Which one or more equations must be satisfied by the	the steady state probabilities π_1 , π_2 , & π_3 ?			
a. $\pi_1 + \pi_2 + \pi_3 = 1$	e. $0.8\pi_1 + 0.15\pi_2 + 0.05\pi_3 = \pi_3$			
b. $\pi_1 + \pi_2 + \pi_3 = 0$	f. $0.05\pi_1 + 0.5\pi_2 + 0.05\pi_3 = \pi_3$			
c. $0.8\pi_1 + 0.8\pi_3 = \pi_1$	g. $0.8\pi_1 + 0.8\pi_3 = 0$			
d. $0.8\pi_1 + 0.15\pi_2 + 0.05\pi_3 = \pi_1$	h. $0.8\pi_1 + 0.15\pi_2 + 0.05\pi_3 = 0$			
\mathbf{u} . 0.0 $\mathbf{n}_1 + 0.10$ $\mathbf{n}_2 + 0.00$ $\mathbf{n}_3 - \mathbf{n}_1$	$11.0.0n_1 + 0.15n_2 + 0.05n_3 = 0$			
Write the expression which represents my average cost per ye	10 1* *			
	ai.			
$_$ $\pi_1 + _$ $\pi_2 + _$ π_3				
I should expect to replace my car once every ye	ars.			
If my current car is in <i>fair</i> condition, I should expect to replace	e it in years.			
7. The number of transient states in this Markov chain is				
a. 0 c. 2 e. 4	g. NOTA			
b. 1 d. 3 f. 5				
8. The number of recurrent states in this Markov chain i				
a. 0 c. 2 e. 4	g. NOTA			
b. 1 d. 3 f. 5				
3. Birth/Death Model of a Queue:				
For each birth/death process below, pick the classification of	of the queue and write it in the blank to the left:			
	M/M/2 i. M/M/1/4/4 k. M/M/4/2			
	M/M/1/4 j. M/M/2/4 l. NOTA			
4 3 2 1	5			
	\frown			
(0) (1) (2) (3) (4)			


2

___1.

4


4

4

A job shop has four numerically controlled machines that are capable of operating on their own (i.e., without a human operator) once they have been set up with the proper cutting tools and all adjustments are made. Each setup requires the skills of an experienced machine operator, and the time need to complete a setup is exponentially distributed with a mean of 30 minutes. When the setup is complete, the machine operator pushes a button, and the machine requires no further attention until it has finished its job, when it is ready for another setup. The job times are exponentially distributed with a mean of one hour. Two operators have been assigned to this group of machines. (If only one machine requires attention, only one operator will tend it, rather than both working together.)

6. Indicate the transition rates on the diagram:

7. Write the expression which is used to evaluate π_0 :

The steady-state probability distribution is:

:	π:	CDE		
<u>1</u>	$\pi_{ ext{i}}$	<u>CDF</u>		
0	0.1839	0.1839		
1	0.3678	0.5517		
2	0.2759	0.8276		
3	0.1379	0.9655		
4	0.0345	1		
8. What is the percent of t	he time that both m	nachinists are idle? (Cho	ose nearest value.)	
a. 10%	c. 20%	e. 30%	g. 40%	
b. 15%	d. 25%	f. 35%	h. 45% or more	
9. What is the average nur	nber of machines in	n operation? (Choose ne	arest value.)	
a. 0.5	c. 1.5	e. 2.5	g. 3.5	
b. 1.0	d. 2.0	f. 3.0	h. 4.0	
10. What is the utilization	of each machine, i.	e., the percent of the tim	e that each machine is	busy? (Choose
nearest value.)				
a. ≤50%	c. 60%	e. 70%	g. 80%	i. 90%
b. 55%	d. 65%	f. 75%	h. 85%	j. 95% or more
Suppose that the average rate a	t which machines c	complete jobs is 2.5/hour	r	-

11. What is the average length of the time interval between a machine's completion of a job and the starting of another job (in hours)? (*Choose nearest value*.)

Name or Initials _____

a. 0.5	c. 0.6	e. 0.7	g. 0.8	i. 0.9
b. 0.55	d. 0.65	f. 0.75	h. 0.85	j. 0.95 or more

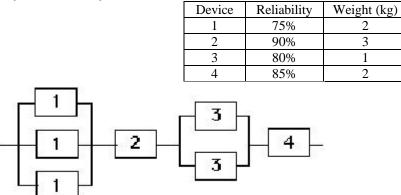
4. Integer Programming Models

The board of directors of a large manufacturing firm is considering the set of investments shown below: Let R_i be the annual revenue (in \$millions) from investment *i* and C_i the cost (in \$millions) to make investment *i*. The board wishes to maximize total annual revenues and invest no more than a total of 50 million dollars.

Investment	Revenue	Cost	
i	Ri	Ci	Condition
1	1	5	None
2	2	8	Only if #1
3	3	12	None
4	4	18	Must if #1 and #2
5	5	24	Not if both #3 and #4
6	6	27	None
7	7	30	Only if both #3 and #6

Define variables:

 $X_i = 1$ if investment i is selected, else 0.

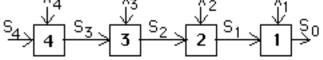

1. Formulate this problem without the "side conditions" as an integer LP.

This is an example of a special class of integer programming problems called *knapsack* problems.

2. Add a constraint or constraints to enforce the condition "Investment #2 can be selected only if #1 is selected".

- 3. Add a constraint or constraints to enforce the condition "Investment #4 *must* be selected if both #1 & #2 are selected".
- 4. Add a constraint or constraints to enforce the condition "Investment #5 *cannot* be selected if both #3 & #4 are selected".
- 5. Add a constraint or constraints to enforce the condition "Investment #7 only if both #3 and #6 are selected".

5. Optimization of System Reliability by DP: A system consists of 4 devices, each subject to possible failure, such that the system fails if any one or more of the devices fail:



Suppose that redundant units of devices 1 and 3 are included as shown above. (That is, system failure occurs if all 3 of device 1, or both of device 3, or device 2, or device 4 were to fail.)

1. The reliability of **device 3** in the system shown is:

```
a. 1-.2^2 = 96\% b. .8^2 = 64\% c. 1-e^{-2\times0.2} = 32.97\%
```

d. $.2^2 = 4\%$	e. $1 - e^{-2 \times 0.8} = 79.8^{\circ}$ g. <i>NOTA</i>	% f. $18^2 = 36\%$
2. The reliability of this entire	U	
$a. 1 - (0.75^3) (0.$	$9)(0.8^2)(0.85) = 79.35\%$	
	$(1 - e^{-0.9})(1 - e^{-2 \times 0.8})(1$	
$(1-0.25^3)(1$	$(-0.1)(1-0.2^2)(1-0.1)$	5) = 72.29%
$d_{\rm d} \left(1 - 0.75^3\right) \left(1 - 0.75^3\right)$	$(-0.9)(1-0.8^2)(1-0.8^2)$	(35) = 0.3%
$e.(1-e^{-3\times0.25})($	$(1 - e^{-0.1})(1 - e^{-2 \times 0.2})(1 - e^{-2 \times 0.2})$	$(-e^{-0.15}) = 0.23\%$
$f. 1 - (1 - 0.25^3)$	$(1 - 0.1)(1 - 0.2^2)(1 - 0.2^2)$	(0.15) = 27.71%
g. NOTA		
3. The weight of this system is	:	
a. 10 kg.	c. 11 kg.	e. 12 kg.
b. 13 kg.	d. 14 kg.	f. none of the above
Suppose that we wish to find the sys	tem design having maximum	reliability subject to a limit of 14 kg. weight.
×4	$\frac{X_3}{4}$ $\frac{X_2}{4}$ $\frac{1}{2}$	$-\frac{\chi_1}{\Psi}$ c

__4. Define a dynamic programming model with optimal value function $f_n(S)$, where $f_n(S)$ is

a. the reliability of S redundant units of device #n.

b. the maximum reliability of the system if n redundant units are allowed.

c. the maximum reliability of devices 1 through n, if S kg. of weight is allocated to them.

d. the maximum reliability of devices n through 4, if S kg. of weight is allocated to them.

5. The value of S4 is (choose one <u>or more</u>!):

a. the safety factor for device 4	b. 15%
c. the state of the DP system at stage 4	d. 1 kg.

e. the reliability of device #4

The following table shows the reliability of a device for various numbers of redundant units:

# units						
Device	1	2	3			
1	.75	.9375	.984375			
2	.9	.99	.999			
3	.8	.96	.992			
4	.85	.9775	.996625			

f. 14 kg.

The following output is obtained during the solution of the DP model, where several values have been omitted. *Note that the value -99.99999 is used to indicate -* \pm *, i.e., an infeasible combination of s & x.*

6. Enter the missing value for each. of the entries in the tables:

____α ___β ____γ ___δ ____ε

7. The optimal design, weighing 14 kg., has reliability:

8. The optimal design has _____ units of #1, _____ unit of #2, _____ units of #3, and _____ units of #4.

Stage	1
-------	---

Stage 1						
				$f_1(s)$	optimal	l next
s \:	x: 1	2	3		x	state
2	0.75000	-99.99999	-99.99999	0.75000	1	0
3	0.75000	$^{-}99.99999$	$^{-}99.99999$	0.75000	1	1
4	0.75000	α	-99.99999	0.93750	2	0
5	0.75000	0.93750	-99.99999	0.93750	2	1
7	0.75000	0.93750	0.98438	0.98438	3	1
8	0.75000	0.93750	0.98438	0.98438	3	2
9	0.75000	0.93750	0.98438	0.98438	3	3
10	0.75000	0.93750	0.98438	0.98438	3	4
11	0.75000	0.93750	0.98438	0.98438	3	5
12	0.75000	0.93750	0.98438	0.98438	3	6
13	0.75000	0.93750	0.98438	0.98438	3	7
14	0.75000	0.93750	0.98438	0.98438	3	8

---Stage 2---

		Stage 2				
				$f_1(s)$	optimal	. next
s \2	x: 1	2	3		x	state
5	0.67500	$^{-}99.99999$	-99.99999	0.67500	1	2
6	0.67500	-99.99999	-99.99999	0.67500	1	3
7	0.84375	$^{-}99.99999$	$^{-}99.99999$	0.84375	1	4
8	0.84375	0.74250	-99.99999	0.84375	1	5
9	0.8859	0.74250	-99.99999	0.88594	1	6
10	0.88594	0.92813	-99.99999	β	γ	<u>δ</u>
11	0.88594	0.92813	0.74925	0.92813	2	5
12	0.88594	0.97453	0.74925	0.97453	2	6
13	0.88594	0.97453	0.93656	0.97453	2	7
14	0.88594	0.97453	0.93656	0.97453	2	8

---Stage 3---

				$f_1(s)$	optimal	next
s \>	<: 1	2	3		x	state
6	0.54000	$^{-}99.99999$	$^{-}99.99999$	0.54000	1	5
7	0.54000	0.64800	-99.99999	0.64800	2	5
8	0.67500	0.64800	0.66960	0.67500	1	7
9	0.67500	0.81000	0.66960	0.81000	2	7
10	0.70875	0.81000	0.83700	0.83700	3	7
11	0.74250	0.85050	0.83700	0.85050	2	9
12	0.74250	0.89100	<u> </u>	0.89100	2	10
13	0.77963	0.89100	0.92070	0.92070	3	10
14	0.77963	0.93555	0.92070	0.93555	2	12

	St	tage 4				
				$f_1(s)$	optima	l next
s \x	x: 1	2	3		х	state
8	0.45900	-99.99999	$^{-}99.99999$	0.45900	1	6
9	0.55080	-99.99999	$^{-}99.99999$	0.55080	1	7
10	0.57375	0.52785	$^{-}99.99999$	0.57375	1	8
11	0.68850	0.63342	$^{-}99.99999$	0.68850	1	9
12	0.71145	0.65981	0.53818	0.71145	1	10
13	0.72293	0.79178	0.64581	0.79178	2	9
14	0.75735	0.81817	0.67272	0.81817	2	10