VAVAVAV 56:171 Operations Research VAVAVAV
 AVAVAVA VAVAVAV
 Final Examination Solutions December 15, 1999 $\underset{\text { VYVAVAV }}{\text { VAV }}$

- Write your name on the first page, and initial the other pages.
- Answer both Parts A and B, and $\mathbf{4}$ (out of 5) problems from Part C.

Part A:
Miscellaneous multiple choice
Possible
Part B:
Sensitivity analysis (LINDO) 17

Discrete-time Markov chains I
2. Discrete-time Markov chains II 15
3. Continuous-time Markov chains 15
4. Integer Programming Models 15
5. Dynamic programming $\underline{15}$
total possible:
88

VAVAVAVPARTA VAVAVAV

Multiple Choice: Write the appropriate letter (a, b, c, d, or e) : (NOTA =None of the above).
_e_1. If, in the optimal primal solution of an LP problem ($\min \mathrm{cx} \mathrm{st} \mathrm{Ax} \geq \mathrm{b}, \mathrm{x} \geq 0$), there is zero slack in constraint \#1, then in the optimal dual solution,
a. dual variable $\# 1$ must be zero
c. slack variable for dual constraint $\# 1$ must be zero
b. dual variable \#1 must be positive
d. dual constraint \#1 must be slack
e. NOTA

Note: Dual variable \#1 may or may not be zero (if zero, solution is "degenerate").
___ 2. If, in the optimal solution of the dual of an LP problem ($\min \mathrm{cx}$ subject to: $\mathrm{Ax} \geq \mathrm{b}, \mathrm{x} \geq 0$), dual variable \#2 is positive, then in the optimal primal solution,
a. variable \#2 must be zero
c. slack variable for constraint $\# 2$ must be zero
b. variable \#2 must be positive
d. constraint \#2 must be slack
e. NOTA
\qquad
a. $\mathrm{C}_{\mathrm{ij}}>\mathrm{U}_{\mathrm{i}}+\mathrm{V}_{\mathrm{j}}$
b. $C_{i j}=U_{i}+V_{j}$
c. $\mathrm{C}_{\mathrm{ij}}<\mathrm{U}_{\mathrm{i}}+\mathrm{V}_{\mathrm{j}}$
d. $\mathrm{C}_{\mathrm{ij}}+\mathrm{U}_{\mathrm{i}}+\mathrm{V}_{\mathrm{j}}=0$
e. $\mathrm{C}_{\mathrm{ij}}=\mathrm{U}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$
f. NOTA
\qquad 4. For a discrete-time Markov chain, let P be the matrix of transition probabilities. The sum of each...
a. column is 1
c. row is 1
b. column is 0
d. row is 0
e. NOTA
\qquad 5. In a birth/death process model of a queue, the time between arrivals is assumed to
a. have the Beta distribution
c. be constant
b. have the Normal distribution
d. have the exponential distribution
e. NOTA
\qquad 6. In an M/M/1 queue, if the arrival rate $=\lambda<\mu=$ service rate, then
a. $\pi_{\mathrm{O}}=1$ in steady state
c. $\pi_{\mathrm{i}}>0$ for all i
e. the queue is not a birth-death process
b. no steady state exists
d. $\pi_{\mathrm{O}}=0$ in steady state
f. NOTA
\qquad 7. If there is a tie in the "minimum-ratio test" of the simplex method, the solution in the next tableau
a. will be nonbasic
c. will have a worse objective value
a. will be nonfeasible
d. will be degenerate
e. NOTA
_ a_ 8. An absorbing state of a Markov chain is one in which the probability of
a. moving out of that state is zero
c. moving out of that state is one.
b. moving into that state is one.
d. moving into that state is zero
e. NOTA

The problems (9)-(12) below refer to the following LP:

$$
\begin{aligned}
& \text { Maximize } 3 X_{1}+5 X_{2} \\
& \text { subject to } 2 X_{1}-X_{2} \leq 5 \\
& X_{1}+3 X_{2} \leq 15 \\
& X_{1}-2 X_{2} \geq-4 \\
& X_{1} \geq 0, X_{2} \geq 0
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Maximize } 3 \mathrm{X}_{1}+5 \mathrm{X}_{2} & \\
\text { subject to } 2 \mathrm{X}_{1}-\mathrm{X}_{2}+\mathrm{X}_{3} & =5 \\
\mathrm{X}_{1}+3 \mathrm{X}_{2}+\mathrm{X}_{4} & =15 \\
\mathrm{X}_{1}-2 \mathrm{X}_{2} \quad-\mathrm{X}_{5} & =-4 \\
& \\
& \mathrm{X}_{\mathrm{j}} \geq 0, \mathrm{j}=1,2,3,4,5
\end{array}
$$

a or b 9 .The feasible region includes (possibly with others) points:
a. $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$
c. D, C, \& E
e. D, E, \& G
b. B \& F
d. E, F, \&G
f. NOTA
\qquad 10. At point \mathbf{F}, the basic variables include the variables
a. $\mathrm{X}_{1}, \mathrm{X}_{2} \& \mathrm{X}_{3}$
c. $\mathrm{X}_{2}, \mathrm{X}_{4} \& \mathrm{X}_{5}$
e. $\mathrm{X}_{1}, \mathrm{X}_{2} \& \mathrm{X}_{5}$
b. $\mathrm{X}_{1}, \mathrm{X}_{3} \& \mathrm{X}_{4}$
d. $X_{1}, X_{2} \& X_{4}$
f. NOTA
\qquad 11. Which point is degenerate in the primal problem?
a. point A
c. point C
e. point E
b. point B
d. point D
f. NOTA
12. The dual of this LP has the following constraints (not including nonnegativity or nonpositivity):
a. 2 constraints of type (\geq)
d. one each of type $\geq \&=$
b. one each of type $\leq \& \geq$
e. 2 of type \leq and 1 of type \geq
c. 2 constraints of type (\leq)
f. NOTA
\qquad 13. The dual of the LP has the following types of variables:
a. three non-negative variables e. three non-positive variables
b. one non-negative and two non-positive variables
f. NOTA
c. two non-negative variables and one unrestricted in sign
d. two non-negative variables and one non-positive variable
14. If point F is optimal, then which dual variables must be zero, according to the Complementary Slackness Theorem?
a. Y_{1} and Y_{2}
d. Y1 only
b. Y_{1} and Y_{3}
e. Y_{2} only
c. Y_{2} and Y_{3}
f. Y3 only
15. The number of basic variables in a solution of a transportation problem with 5 sources and 7 destinations is $_\underline{11}$
\qquad 16. A balanced transportation problem is one in which
a. \# sources = \# destinations
c. supplies \& demands all 1
e. NOTA
b. cost coefficients are all 1
d. sum of supplies = sum of demand
17. An assignment problem is a transportation problem for which
a. \# sources = \# destinations
c. supplies \& demands all 1
e. NOTA
b. cost coefficients are all 1
d. sum of supplies = sum of demand

VAVAVAV PART B VAVAVAV

Sensitivity Analysis in LP.

Zales Jewlers uses rubies and sapphires to produce two types of rings. A type 1 ring requires 2 rubies, 3 sapphires, and 1 hour of jeweler's labor. A type 2 ring requires 3 rubies, 2 sapphires, and 2 hours of jeweler's labor. Each type 1 ring sells for $\$ 400$, and each type 2 ring sells for $\$ 500$. All rings produced by Zales can be sold. At present, Zales has 100 rubies, 120 sapphires, and 70 hours of jeweler's labor available. Extra rubies can be purchased at a cost of $\$ 100$ each. Market demand requires that the company produce at least 20 type 1 rings and at least 25 type 2 rings. To maximize profit, Zales should solve the following LP:
$\mathrm{X} 1=$ type 1 rings produced.
$\mathrm{X} 2=$ type 2 rings produced
$\mathrm{R}=$ number of rubies purchased.

$$
\begin{aligned}
& \text { MAX } \mathrm{z}=400 \mathrm{X} 1+500 \mathrm{X} 2-100 \mathrm{R} \\
& \text { s.t. } 2 \mathrm{X} 1+3 \mathrm{X} 2 \mathrm{R} \leq 100 \\
& 3 \mathrm{X} 1+2 \mathrm{X} 2 \quad \leq 120 \\
& \mathrm{X} 1+2 \mathrm{X} 2 \quad \leq 70 \\
& \mathrm{X} 1 \\
& \\
& \quad \mathrm{X} 2
\end{aligned}
$$

X10, X20, R0
The LINDO output for this problem follows:

MAX $400 \mathrm{X} 1+500 \mathrm{X} 2-100 \mathrm{R}$		
SUBJECT TO		
2)	$2 \mathrm{X} 1+3 \mathrm{X} 2-\mathrm{R}$	<= 100
3)	$3 \mathrm{X} 1+2 \mathrm{X} 2<=$	120
4)	$\mathrm{X} 1+2 \mathrm{X} 2<=$	70
5)	$\mathrm{X1}>=20$	
6)	$\mathrm{X} 2>=25$	
END		
OBJECTIVE FUNCTION VALUE		
19000.00		
VARIABLE	VALUE	REDUCED COST
X1	20.000000	. 000000
X2	25.000000	.000000
R	15.000000	.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	. 000000	100.000000
3)	10.000000	. 000000
4)	.000000	200.000000
5)	.000000	.000000
6)	-. 000000	-200.000000

RANGES IN WHICH THE BASIS IS UNCHANGED:

		OBJ COEFFICIENT RANGES	
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
X1	400.000000	INFINITY	100.000000
X2	500.000000	200.000000	INFINITY
R	-100.000000	100.000000	100.000000
		RIGHTHAND SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	100.000000	15.000000	INFINITY
3	120.000000	INFINITY	10.000000
4	70.000000	3.333333	. 000000
5	20.000000	. 000000	INFINITY
6	25.000000	.000000	2.500000

ROW	X1	X2	R	SLK 2	SLK 3	SLK 4	SLK 5	SLK 6	RHS
1 ART	. 000	. 000	. 000	100.000	. 000	200.000	. 000	200.000	19000.000
2 X2	. 000	1.000	. 000	. 000	. 000	. 000	. 000	-1.000	25.0000
3 SLK 3	. 000	.000	. 000	. 000	1.000	-3.000	. 000	-4.000	10.000
4 R	. 000	. 000	1.000	-1.000	. 000	2.000	. 000	1.000	15.000
5 X1	1.000	. 000	. 000	. 000	. 000	1.000	. 000	2.000	20.000
6 SLK 5	. 000	. 000	. 000	. 000	. 000	1.000	1.000	2.000	. 000

_a 1. Suppose that instead of $\$ 100$, each ruby costs $\$ 150$. Would Zales still purchase rubies?
a. Yes
b. No
c. Cannot be determined
e 2. What is the most that Zales would be willing to pay for another hour of jeweler's time? Choose nearest answer:
a. nothing
b. $\$ 50$
c. $\$ 100$
d. $\$ 150$
e. \$200
f. Cannot be determined
d 3. Your answer in (2) is valid for up to how many additional hours? Choose nearest answer:
a. zero
b. 1 hour
c. 2 hours
d. 3 hours
e. four hours
f. Cannot be determined
a 4. Consider the labor availability constraint, after it is transformed by LINDO into equation form:

$$
\mathrm{X} 1+2 \mathrm{X} 2(+/-?) \text { SLK } 4=70
$$

What sign should SLK 4 have in this equation?
a. Plus
b. Minus
_ b_ 5. If we wished to determine the effect on the above solution if 1 additional hour of jeweler's time were available, we would \qquad the variable SLK 4 by 1 unit.
a. increase
b. decrease
b 6. If the variable SLK 4 were to increase by 1 hour, then according to the substitution rates, the number of rubies purchased would
a. increase
b. decrease
c. remain the same
c 7. If the variable SLK 4 were to increase by 1 hour, then according to the substitution rates, the number of type 2 rings made would
a. increase
b. decrease
c. remain the same
a 8. If the variable SLK 4 were to decrease by 1 hour, then according to the substitution rates, the number of type 1 rings made would
a. increase
b. decrease
c. remain the same
b 9. Suppose that instead of $\$ 500$, each type 2 ring were to have a profit of $\$ 400$ each. Would Zales reduce the number of such rings produced?
a. Yes
b. No
c. Cannot be determined
b 10. Suppose that instead of $\$ 500$, each type 2 ring were to have a profit of $\$ 600$ each. Would Zales increase the number of such rings produced?
a. Yes
b. No
c. Cannot be determined

VAVAVAV PART C VAVAVAV

1. Discrete-Time Markov Chains I: The Minnesota State University admissions office has modeled the path of a student through the university as a Markov Chain:

	Freshman	Sophomore	Junior	Senior	Quits	Graduates
Freshman	0.10	0.80	0	0	0.10	0
Sophomore	0	0.10	0.85	0	0.05	0
Junior	0	0	0.12	0.80	0.08	0
Senior	0	0	0	0.10	0.05	0.85
Quits	0	0	0	0	1.00	0
Graduates	0	0	0	0	0	1.00

Each student's state is observed at the beginning of each fall semester. For example, if a student who is a junior at the beginning of the current fall semester has an 80% chance of becoming a senior at the beginning of the next fall
semester, a 15% chance of remaining a junior, and a 5\% chance of quitting. (We will assume that a student who quits never re-enrolls.)

```
Powers of P:
    P
        3|0 0 0.0144 0.176 0.1296 0.68
\begin{tabular}{l|llllll}
4 & 0 & 0 & 0 & 0.01 & 0.055 & 0.935 \\
5 & 0 & 0 & 0 & 0 & 1 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\backslash\) & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline m & & & & & & \\
\hline 1 & 0.001 & 0.024 & 0.2176 & 0.544 & 0.2134 & 0 \\
\hline 2 & 0 & 0.001 & 0.03094 & 0.2176 & 0.17246 & 0.578 \\
\hline 31 & & 0 & 0.001728 & 0.02912 & 0.139552 & 0.8296 \\
\hline 4 & 0 & 0 & 0 & 0.001 & 0.0555 & 0.9435 \\
\hline 5 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 6 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline & from & & & & & & & \\
\hline & 1 & & . 0001 & 0.0032 & 0.046512 & 0.22848 & 0.259308 & 0.4624 \\
\hline & 2 & 0 & & 0.0001 & 0.0045628 & 0.046512 & 0.185865 & 0.76296 \\
\hline \(\mathrm{P}^{4}=\) & 3 & 0 & & 0 & 0.00020736 & 0.0042944 & 0.141146 & 0.854352 \\
\hline & 4 & 0 & & 0 & 0 & 0.0001 & 0.05555 & 0.94435 \\
\hline & 5 & 0 & & 0 & 0 & 0 & 1 & 0 \\
\hline & 6 & 0 & & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & ) & 5 & 6 \\
\hline & from & & \\
\hline Absorption & 1 & 0.279212 & 0.720788 \\
\hline Probabilities A: & 2 & 0.189113 & 0.810887 \\
\hline & 3 & 0.141414 & 0.858586 \\
\hline & 4 & 0.0555556 & 0.944444 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\backslash\) & 1 & 2 & 3 & 4 \\
\hline \multicolumn{5}{|l|}{from} \\
\hline 1 & 1.11111 & 0.987654 & 0.953984 & 0.847986 \\
\hline 2 & 0 & 1.11111 & 1.07323 & 0.953984 \\
\hline 3 & 0 & 0 & 1.13636 & 1.0101 \\
\hline 4 & 0 & 0 & 0 & 1.11111 \\
\hline
\end{tabular}
```

Select the nearest available numerical choice in answering the questions below.
e 1. The number of transient states in this Markov chain model is
a. 0
c. 2
e. 4
g. NOTA
b. 1
d. 3
f. 5
c 2. The number of absorbing states in this Markov chain model is
a. 0
c. 2
e. 4
g. NOTA
b. 1
d. 3
f. 5
c 3. The number of recurrent states in this Markov chain model is
a. 0
c. 2
e. 4
g. NOTA
b. 1
d. 3
f. 5
4. The closed sets of states in this Markov chain model are (circle all that apply!)
a. $\{1\}$
b. $\{2\}$
c. $\{3\}$
d. $\{4\}$
e. $\{5\}$
f. $\{6\}$
g. $\{1,2,3,4\}$
h. $\{1,2,3,4\}$
i. $\{5,6\}$
j. $\{2,3,4\}$
k. $\{3,4\}$
l. $\{1,2,3,4,5,6\}$
5. The minimal closed sets of states in this Markov chain model are (circle all that apply!)
a. $\{1\}$
b. $\{2\}$
c. $\{3\}$
d. $\{4\}$
e. $\{5\}$
f. $\{6\}$
g. $\{1,2,3,4\}$
h. $\{1,2,3,4\}$
i. $\{5,6\}$
j. $\{2,3,4\}$
k. $\{3,4\}$
l. $\{1,2,3,4,5,6\}$

Suppose that at the beginning of the Fall '99 semester, Joe Cool was a Freshman.
_g_6. What is the probability that Joe is a junior in Fall 2001? (choose nearest answer)
a. 10%
b. 20%
c. 30%
d. 40%
e. 50%
f. 60%
g. 70%
h. 80%
i. 90%
j. 100%
e 7. What is the probability that Joe is a senior in Fall 2002? (choose nearest answer)
a. 10%
b. 20%
c. 30%
d. 40%
e. 50%
f. 60%
g. 70%
h. 80%
i. 90%
j. 100%
__*
a. 5%
b. 10%
c. 15%
d. 20%
e. 25%
f. 30%
g. 35%
h. 40%
i. 45%
j. 50%

* This probability cannot be readily determined from the information given-- requires recursive computation of the first-passage probabilities.
_g_9. What is the probability that Joe eventually graduates? (choose nearest answer)
a. 10%
c. 30%
e. 50%
g. 70%
i. 90%
b. 20%
d. 40%
f. 60%
h. 80%
j. 100\%
c 10. What is the expected length of his academic career, in years? (choose nearest answer)
a. 3 year
b. 3.75 years
c. 4 years
d. 4.25 years
e. 4.5 years
f. 4.75 years
g. 5 years
h. 5.25 years
i. 5.5 years
j. ≥ 5.75 years
e 11. What fraction of students graduate in exactly four years? (choose nearest answer)
a. $\leq 25 \%$
b. 30%
c. 35%
d. 40%
e. 45%
f. 50%
g. 55%
h. 60%
i. 65%
j. 70%
k. 75%
m. 85%

1. 80%
n. $\geq 90 \%$
2. Discrete-time Markov Chains II: On New Year's Eve (December 31) of each year I determine whether my car is in good, fair, or broken-down condition. If my car is broken-down, I replace it on January $1^{\text {st }}$ with a good used car.

- A good car will be good at the end of next year with probability 80%, fair with probability 15%, or broken-down with probability 5%.
- A fair car will be fair at the end of the next year with probability 50%, or broken-down with probability 50%.
- It costs $\$ 10,000$ to purchase a good used car; a fair car can be traded in for $\$ 3000$; and a broken-down car can be sold as junk for $\$ 500$.
- It costs $\$ 1000$ per year to operate a good car and $\$ 1500$ to operate a fair car. If a car breaks down during a year, the operating cost averages $\$ 2000$.
Assume that the cost of operating a car during a year depends on the type of car on hand at the beginning of the year, and that any break-down occurs only at the end of a year.

My policy is to drive my car until it breaks down, at which time I replace it with a good used car. Define a Markov chain model representing the condition of the car which I own on Dec. 31, with three states:

1. Good condition
2. Fair condition
3. Broken-down

The diagram below indicates the transition probabilities:

Below are the $2^{\text {nd }}, 3^{\text {rd }}$, \& $4^{\text {th }}$ powers of P :

Which one or more equations must be satisfied by the steady state probabilities $\pi_{1}, \pi_{2}, \& \pi_{3}$?
a. $\pi_{1}+\pi_{2}+\pi_{3}=1$
b. $\pi_{1}+\pi_{2}+\pi_{3}=0$
c. $0.8 \pi_{1}+0.8 \pi_{3}=\pi_{1}$
d. $0.8 \pi_{1}+0.15 \pi_{2}+0.05 \pi_{3}=\pi_{1}$
e. $0.8 \pi_{1}+0.15 \pi_{2}+0.05 \pi_{3}=\pi_{3}$
f. $0.05 \pi_{1}+0.5 \pi_{2}+0.05 \pi_{3}=\pi_{3}$
g. $0.8 \pi_{1}+0.8 \pi_{3}=0$
h. $0.8 \pi_{1}+0.15 \pi_{2}+0.05 \pi_{3}=0$

Write the expression which represents my average cost per year:

$$
\text { _ } \$ \underline{1000}-\pi_{1}+_\$ \underline{1500} _\pi_{2}+_(\$ \underline{2000+10000-500})_{-} \pi_{3}
$$

I should expect to replace my car once every \qquad years.
If my current car is in fair condition, I should expect to replace it in \qquad 2 years.
a 7. The number of transient states in this Markov chain is
a. 0
c. 2
e. 4
g. NOTA
b. 1
d. 3
f. 5
d 8. The number of recurrent states in this Markov chain is
a. 0
c. 2
e. 4
g. NOTA
b. 1
d. 3
f. 5

3. Birth/Death Model of a Queue:

For each birth/death process below, pick the classification of the queue and write it in the blank to the left:
a. M/M/1
c. $\mathrm{M} / \mathrm{M} / 4$
e. $\mathrm{M} / \mathrm{M} / 2 / 2$
g. $M / M / 2$
i. $\mathrm{M} / \mathrm{M} / 1 / 4 / 4$
k. M/M/4/2
b. $\mathrm{M} / \mathrm{M} / 2$
d. $\mathrm{M} / \mathrm{M} / 4 / 4$
f. $M / M / 2 / 4 / 4$
h. $M / M / 1 / 4$
j. $M / M / 2 / 4$

1. NOTA

M/M/2/4/4

M/M/2/4 2.

M/M/2 3.

M/M/4 4

M/M/1 5 .

A job shop has four numerically controlled machines that are capable of operating on their own (i.e., without a human operator) once they have been set up with the proper cutting tools and all adjustments are made. Each setup requires the skills of an experienced machine operator, and the time need to complete a setup is exponentially distributed with a mean of 30 minutes. When the setup is complete, the machine operator pushes a button, and the machine requires no further attention until it has finished its job, when it is ready for another setup. The job times are exponentially distributed with a mean of one hour. Two operators have been assigned to this group of machines. (If only one machine requires attention, only one operator will tend it, rather than both working together.)
6. Indicate the transition rates on the diagram:

7. Write the expression which is used to evaluate π_{0} :

$$
\frac{1}{\pi_{0}}=1+\frac{4}{2}+\frac{4}{2} \times \frac{3}{4}+\frac{4}{2} \times \frac{3}{4} \times \frac{2}{4}+\frac{4}{2} \times \frac{3}{4} \times \frac{2}{4} \times \frac{1}{4}
$$

The steady-state probability distribution is:

$\underline{\mathrm{i}}$	$\pi \mathrm{i}$	$\underline{\text { CDF }}$
0	0.1839	0.1839
1	0.3678	0.5517
2	0.2759	0.8276
3	0.1379	0.9655
4	0.0345	1

c 8. What is the percent of the time that both machinists are idle? (Choose nearest value.)
a. 10%
b. 15%
c. 20%
d. 25%
e. 30%
f. 35%
g. 40%
h. 45% or more
_e 9. What is the average number of machines in operation? (Choose nearest value.)
a. 0.5
b. 1.0
c. 1.5
d. 2.0
e. 2.5 (2.52)
f. 3.0
g. 3.5
h. 4.0
_d_10. What is the utilization of each machine, i.e., the percent of the time that each machine is busy? (Choose nearest value.)
a. $\leq 50 \%$
b. 55%
c. 60%
d. $65 \% ~(63.2 \%)$
e. 70%
f. 75%
g. 80%
h. 85%
i. 90%
j. 95% or more

Suppose that the average rate at which machines complete jobs is $2.5 /$ hour
_c_11. What is the average length of the time interval between a machine's completion of a job and the starting of another job (in hours)? (Choose nearest value.)
a. 0.5
b. 0.55
c. 0.6
d. 0.65
e. 0.7
f. 0.75
g. 0.8
h. 0.85
i. 0.9
j. 0.95 or more

Little's Law implies that $\mathrm{L}=\lambda \mathrm{W}$ where $\mathrm{L}=0 \pi_{0}+1 \pi_{1}+2 \pi_{2}+3 \pi_{3}+4 \pi_{4}$ is the average number in the queueing system. (Or L could be calculated as 4 minus your answer in (9) above. Hence $\mathrm{L}=4-2.52=$ 1.48 and $\mathrm{W}=\frac{\mathrm{L}}{\lambda}=\frac{1.48}{2.52 / \mathrm{hr}}=0.592 \mathrm{hr}$.

4. Integer Programming Models

The board of directors of a large manufacturing firm is considering the set of investments shown below: Let R_{i} be the annual revenue (in $\$$ millions) from investment i and C_{i} the cost (in $\$$ millions) to make investment i. The board wishes to maximize total annual revenues and invest no more than a total of 50 million dollars.

$\frac{\text { Investment }}{\text { i }}$	Revenue R_{i}	$\frac{\text { Cost }}{C_{i}}$	Condition
1	1	5	None
2	2	8	Only if \#1
3	3	12	None
4	4	18	Must if \#1 and \#2
5	5	24	Not if both \#3 and \#4
6	6	27	None
7	7	30	Only if both \#3 and \#6

Define variables:
$\mathrm{X}_{\mathrm{i}}=1$ if investment i is selected, else 0.

1. Formulate this problem without the "side conditions" as an integer LP.

$$
\begin{aligned}
& \operatorname{Max} \sum_{i=1}^{7} \mathrm{C}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \\
& \text { s.t. } \sum_{i=1}^{7} \mathrm{R}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \leq 50 \\
& \mathrm{X}_{\mathrm{i}} \in\{0,1\} \text { for } \mathrm{i}=1,2, \ldots 7
\end{aligned}
$$

This is an example of a special class of integer programming problems called knapsack problems.
2. Add a constraint or constraints to enforce the condition "Investment \#2 can be selected only if \#1 is selected". $\mathrm{X}_{2} \leq \mathrm{X}_{1}$
3. Add a constraint or constraints to enforce the condition "Investment \#4 must be selected if both \#1 \& \#2 are selected".
$X_{4} \geq X_{1}+X_{2}-1$
4. Add a constraint or constraints to enforce the condition "Investment \#5 cannot be selected if both \#3 \& \#4 are selected".
$\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{5} \leq 2$
5. Add a constraint or constraints to enforce the condition "Investment \#7 only if both \#3 and \#6 are selected".

Can use the pair of constraints

$$
\left\{\begin{array}{l}
\mathrm{X}_{7} \leq \mathrm{X}_{3} \\
\mathrm{X}_{7} \leq \mathrm{X}_{6}
\end{array}\right.
$$

or (summing the two constraints) $2 X_{7} \leq X_{3}+X_{6}$
5. Optimization of System Reliability by DP: A system consists of 4 devices, each subject to possible failure, such that the system fails if any one or more of the devices fail:

Device	Reliability	Weight (kg)
1	75%	2
2	90%	3
3	80%	1
4	85%	2

Suppose that redundant units of devices 1 and 3 are included as shown above. (That is, system failure occurs if all 3 of device 1 , or both of device 3 , or device 2 , or device 4 were to fail.)
__d_1. The reliability of device $\mathbf{3}$ in the system shown is:
a. $.2^{2}=4 \%$
b. $.8^{2}=64 \%$
c. $1-\mathrm{e}^{-2 \times 0.2}=32.97 \%$
d. $1-.2^{2}=96 \%$
e. $1-\mathrm{e}^{-2 \times 0.8}=79.8 \%$
f. $1-.8^{2}=36 \%$
g. NOTA
__c_2. The reliability of this entire system is:
a. $1-\left(0.75^{3}\right)(0.9)\left(0.8^{2}\right)(0.85)=79.35 \%$
b. $\left(1-\mathrm{e}^{-3 \times 0.75}\right)\left(1-\mathrm{e}^{-0.9}\right)\left(1-\mathrm{e}^{-2 \times 0.8}\right)\left(1-\mathrm{e}^{-0.85}\right)=24.26 \%$
c. $\left(1-0.25^{3}\right)(1-0.1)\left(1-0.2^{2}\right)(1-0.15)=72.29 \%$
d. $\left(1-0.75^{3}\right)(1-0.9)\left(1-0.8^{2}\right)(1-0.85)=0.3 \%$
e. $\left(1-\mathrm{e}^{-3 \times 0.25}\right)\left(1-\mathrm{e}^{-0.1}\right)\left(1-\mathrm{e}^{-2 \times 0.2}\right)\left(1-\mathrm{e}^{-0.15}\right)=0.23 \%$
f. $1-\left(1-0.25^{3}\right)(1-0.1)\left(1-0.2^{2}\right)(1-0.15)=27.71 \%$ g. NOTA
__b_3. The weight of this system is:
a. 10 kg .
c. 11 kg .
e. 12 kg .
b. 13 kg .
d. 14 kg .
f. none of the above

Suppose that we wish to find the system design having maximum reliability subject to a limit of 14 kg . weight.

__c_4. Define a dynamic programming model with optimal value function $f_{n}(S)$, where $f_{n}(S)$ is a. the reliability of S redundant units of device $\# n$.
b. the maximum reliability of the system if n redundant units are allowed.
c. the maximum reliability of devices 1 through n , if S kg . of weight is allocated to them.
d. the maximum reliability of devices n through 4 , if S kg . of weight is allocated to them.
__c, f _5. The value of S_{4} is (choose one or more!):
a. the safety factor for device 4
b. 15%
c. the state of the DP system at stage 4
d. 1 kg .
e. the reliability of device \#4
f. 14 kg .

The following table shows the reliability of a device for various numbers of redundant units:

$\#$ units			
Device	1	2	3
1	.75	.9375	.984375
2	.9	.99	.999
3	.8	.96	.992
4	.85	.9775	.996625

The following output is obtained during the solution of the DP model, where several values have been omitted. Note that the value -99.99999 is used to indicate $-\infty$, i.e., an infeasible combination of s \& x.
6. Enter the missing value for each. of the entries in the tables:
$\alpha: 1-0.252=0.9375$ (see table above).
$\beta: \underline{0.92813}$ (maximum value in row of table)
$\gamma: \underline{2}$ (value of X in which β appears)
$\delta: 10-2 \times 3=4$ (remaining capacity after 2 units of weight 3 have been added to system)
$\varepsilon: 0.992 \times \mathrm{f}_{2}(12-3 \times 1)=0.992 \times \mathrm{f}_{2}(9)=0992 \times 0.88594=\underline{\mathbf{0 . 8 7 8 8 5}}$
7. The optimal design, weighing 14 kg ., has reliability: $\mathrm{f}_{4}(14)=\underline{0.81817}$
8. The optimal design has $_\underline{2}$ units of \#1, $__$unit of \#2, $_\underline{3} _$units of \#3, and $__{2}$ _ units of \#4.
---Stage 1---

S	1	2	3	$\mathrm{f}_{1}(\mathrm{~s})$	$\begin{gathered} \text { optima } \\ \mathrm{x} \end{gathered}$	next state
2	0.75000	-99.99999	-99.99999	0.75000	1	0
3	0.75000	-99.99999	-99.99999	0.75000	1	1
4	0.75000	$\underline{\alpha}$	-99.99999	0.93750	2	0
5	0.75000	0.93750	-99.99999	0.93750	2	1
7	0.75000	0.93750	0.98438	0.98438	3	1
8	0.75000	0.93750	0.98438	0.98438	3	2
9	0.75000	0.93750	0.98438	0.98438	3	3
10	0.75000	0.93750	0.98438	0.98438	3	4
11	0.75000	0.93750	0.98438	0.98438	3	5
12	0.75000	0.93750	0.98438	0.98438	3	6
13	0.75000	0.93750	0.98438	0.98438	3	7
14	0.75000	0.93750	0.98438	0.98438	3	8

---Stage 2---

Solutions

