	71 Operations Researc	
	Instructor: D.L. Bricker	-1
	October 19, 1990	$1 \square$

- Write your name on the first page, and initial the other pages.
- Answer both questions of Part One, and 5 problems from Part Two.

Part One:
Part Two:

	Possible
1. True/False	30
2. Sensitivity analysis (LINDO)	20
3. Geometry of simplex method	10
4. LP duality	10
5. Revised simplex method	10
6. LP model formulation	10
7. Assignment problem	10
8. Project scheduling	$\underline{10}$
total:	100

(1.) True/False: Indicate by " + " or " o " whether each statement is "true" or "false", respectively: a. If the optimal value of a slack variable of a primal LP constraint is positive, then the optimal value of the dual variable for that same constraint must equal zero.
b. In reference to LP, the terms "dual variable", "shadow price", and "simplexmultiplier" are identical.
\qquad c. If you make a mistake in choosing the pivot row in the simplex method, the next basic solution will have one or more negative variables.
d. If the primal LP feasible region is nonempty and bounded, then the dual LP cannot be unbounded nor infeasible.
e. In PERT, the total completion time of the project is assumed to have a BETA distribution.
f. If the primal LP has an optimal solution, then its dual LP has also.
g. All tasks on the critical path have their latest finish time equal to their earliest start time.
h. If the current basis is not degenerate, the dual variables at any iteration of the simplex method for solving a transportation problem are uniquely determined.
\qquad i. The two-phase simplex method solves for the dual variables in phase one, and then solves for the primal variables in phase two.
j. In a minimization problem, the "Big-M" method assigns high costs to artificial variables to force them from the basis.
\qquad k. If you make a mistake in choosing the pivot column in the simplex method, the next basic solution will be infeasible.

1. During a change of basis in the simplex method for the transportation problem, the "substitution rates" are all $+1,0$, or -1 .
m . In the critical path method for project scheduling, the latest finish time for a task depends upon the earliest finish time for the project.
n . If a slack variable of a primal LP constraint is zero in the optimal solution, then there is a corresponding dual variable whose optimal value is also zero.
o. In a transportation problem with 4 sources and 6 destinations, with total supply exceeding total demand, the number of basic variables will be 10 .
(2.) Sensitivity Analysis in LP. Recall the Gasoline Blending Problem discussed in class: A refinery takes four raw gasolines, blends them, and produces three types of fuel.

Raw Gas Type	Octane Rating	Available (Barrels/day)	Price $(\$ /$ barrel $)$
1	68	4000	31.02
2	86	5050	33.15
3	91	7100	36.35
4	99	4300	38.75

Fuelblend Type	Minimum Octane rating	Sellingprice Price $(\$ /$ barrel $)$	Demand Pattern (barrels/day)
1	95	45.15	$\leq 10,000$
2	90	42.95	any amt. can be sold
3	85	40.99	$\geq 15,000$

Raw gasolines not used in blending can be sold at
$\$ 38.95 /$ barrel if octane rating ≥ 90, and $\$ 36.85 /$ barrel if octane rating <90
The LINDO output for this problem is as follows:

5	Y1	. 000	0.000	. 000	. 000	0.000	. 152
6	X23	. 000	1.000	. 000	. 000	. 000	1.000
7	X41	-2.875	-. 625	. 000	1.000	. 000	. 333
8	X33	-3.875	-1.625	. 000	. 000	. 000	-. 333
9	SLK 9	0.000	. 000	. 000	. 000	. 000	-. 667
10	X43	2.875	. 625	. 000	. 000	. 000	-. 333
ROW	X32	X42	x13	X23	X33	X43	Y1
1	. 693	. 934	0.000	0.000	0.000	0.000	. 000
2	. 426	. 574	0.000	. 000	. 000	0.000	. 000
3	-. 045	-. 409	. 000	. 000	. 000	. 000	. 000
4	-. 148	. 148	1.000	0.000	. 000	0.000	. 000
5	. 194	. 261	0.000	0.000	. 000	0.000	1.000
6	. 000	. 000	. 000	1.000	. 000	. 000	. 000
7	. 426	. 574	0.000	. 000	. 000	0.000	. 000
8	. 574	-. 574	0.000	. 000	1.000	0.000	. 000
9	-. 852	-1.148	0.000	. 000	. 000	0.000	. 000
10	-. 426	. 426	0.000	. 000	. 000	1.000	. 000
ROW	Y2	Y3	Y4	SLK 2	SLK 3	SLK 4	SLK 9
1	5.533	4.970	7.430	. 307	. 277	. 307	. 000
2	. 333	. 426	. 574	. 144	. 000	. 019	. 000
3	. 000	. 000	. 000	. 000	. 045	. 000	. 000
4	-. 333	-. 148	. 148	. 037	. 000	. 037	. 000
5	. 333	. 148	-. 148	-. 037	-. 045	-. 037	. 000
6	1.000	. 000	. 000	. 000	. 000	. 000	. 000
7	. 333	. 426	. 574	-. 106	. 000	. 019	. 000
8	-. 333	. 574	-. 574	-. 144	. 000	-. 019	. 000
9	-. 667	-. 852	-1.148	-. 037	. 000	-. 037	1.000
10	-. 333	-. 426	. 426	. 106	. 000	-. 019	. 000

ROW	SLK 10	RHS
1	1.1	$0.14 \mathrm{E}+06$
2	.315	2453.704
3	.000	.000
4	-.370	3457.407
5	.370	542.593
6	.000	5050.000
7	.315	2453.704
8	-.315	4646.296
9	-.630	5092.593
10	-.315	1846.296

Consult the LINDO output to answer the following questions. (If not enough information is available in the output, answer "no info".)
a. Suppose that the market price of "raw gasoline \#1" were to drop by $\$ 1.50$ per barrel. Would the solution change? \qquad If so, how? \qquad
b. If the supplier for "raw gasoline \#4" were to increase its availability by 1000 barrels per day (to 5300 barrels/day), would this increase the company's profits? \qquad If so, by how much? \qquad
c. If the demand for fuel blend \#3 (which must be satisfied) increases by 100 barrels per day, what will be the change in: (Be sure to specify whether increase or decrease!)

- the optimal profit? \qquad
- the quantity of "raw gasoline \#4" used in making fuel blend \#3? \qquad
- the quantity of "raw gasoline \#1" sold on the market? \qquad
(Hint: the variable SLK10 is actually what we have called a "surplus" variable: converted to an equation, row \#10 is: $\quad X 13+X 23+X 33+X 43-S L K 10=15000$ If the sum $(X 13+X 23+X 33+X 43)$ is to be increased by 100, while the RHS remains 15000, what becomes of SLK10? According to the "substitution rates", how are the basic variables changed?)
d. Type 2 "raw gasoline" is not sold on the market. If a previous commitment required the company to sell 100 barrels, at the given price, how much loss in profit would result?
e. Suppose that 100 barrels of type 2 "raw gasoline" is sold on the market. What are the resulting changes in the optimal values of the following variables? (Be sure to specify whether increase or decrease!)
- the number of gallons of raw gas \#1 sold on the market? \qquad
- the number of gallons of raw gas \#2 used in blend \#3? \qquad
- the number of gallons of raw gas \#1 used in blend \#3? \qquad
- the number of gallons of raw gas \#2 used in blend \#1? \qquad

(3.) Consider the following LP problem:

$$
\begin{array}{lcl}
\text { Maximize } & 3 X_{1}+2 x_{2} & \\
\text { subject to } & X_{1}+2 x_{2} \leq 6 \\
& x_{1}-x_{2} & \leq 4 \\
& -x_{1}+2 x_{2} & \leq 1 \\
& x_{1} \geq 0 & \\
& x_{2} \geq 0 & \tag{5}
\end{array}
$$

Below is a graph of the feasible region:

(a.) The feasible region is a polyhedron with 5 edges. Indicate which constraint defines each edge by labeling the edges (in the circles) on the graph, using the numbers (1) through (5) to the right of the constraints above.
(b.) How many basic variables must this LP problem have? \qquad
(c.) Which variables are basic at the extreme point labeled (B)? \qquad
(d.) Suppose that during the simplex method, a move is made from the extreme point labeled (B), i.e., $X=(4,0)$, to the extreme point labeled (C), i.e., $X=(14 / 3,2 / 3)$. Which variable entered the basis? \qquad Which left the basis? \qquad
(e.) Which extreme point is optimal for this problem? \qquad
(f.) What is the total number of basic solutions of the system? How many of these are feasible? \qquad How many are infeasible? \qquad (Do NOT compute them!)
(4.) Revised Simplex Method. We wish to solve the LP problem
$\operatorname{Max} \mathrm{z}=\mathrm{cx}$
subject to $A x=b, x \geq 0$
where A is a 2×5 matrix. After several iterations, the current basic variables are $(-z), X_{1}$, and X_{5}. A portion of the current tableau is shown below:

-2	x_{1}	x_{2}	x_{5}	x_{4}	x_{5}	RHS
		0.875		-2.125		
		-0.125		0.875	0	9.75
		0.375	0.875	0.375		4.75

a. What is the "substitution rate" of X_{2} for X_{1} ? \qquad
b. If X_{2} increases by 1 unit, X_{1} (increases/decreases) (circle one) by \qquad units.
c. If the objective coefficient vector c is $(3,2,6,2,4)$, and the current basis inverse matrix is

$$
\left[\begin{array}{l}
3 / 81 / 4 \\
-1 / 81 / 4
\end{array}\right]
$$

compute the values of the simplexmultipliers: \qquad
d. Using the results of (c), what is the relative profit of X_{3}, given that column 3 of the A matrix is the transpose of $[3,5]$? \qquad
e. Complete the missing portions of the tableau above.
f. The current tableau is not optimal. Circle a pivot entry which will increase the profit.
g. Which variables will be basic at the next iteration? \qquad
(5.) LINEAR PROGRAMMING DUALITY: Consider the following LP:

$$
\begin{aligned}
& \text { Minimize } \\
& \begin{array}{rlll}
2 \mathrm{X}_{1}+5 \mathrm{X}_{2}+3 \mathrm{X}_{3} & +\mathrm{X}_{5} & \\
\mathrm{x}_{1} & +2 \mathrm{x}_{3}-\mathrm{x}_{4} & & =12 \\
-\mathrm{x}_{1}+2 \mathrm{x}_{2} & +\mathrm{x}_{4} & +\mathrm{X}_{5} & \leq 15 \\
6 \mathrm{X}_{2}-\mathrm{x}_{3} & & +2 \mathrm{X}_{5} & \geq 8
\end{array} \\
& x_{1} \geq 0, x_{2} \geq 0,0 \leq x_{3} \leq 4, \quad x_{4} \leq 0 \quad\left(X_{5}\right. \text { is unrestricted in sign) }
\end{aligned}
$$

a. Write a dual of this LP problem. (Note the upper bound on X_{3}.)
b. The point $(4,2,4,0,0)$ is feasible. What (if anything) does thisimply: -- about the feasibility of the dual problem?
-- about the boundedness of the dual problem?
c. IF $X=(4,2,4,0,0)$ is optimal in the primal problem, then what dual variables(including slack or surplus variables) must be zero in the dual optimal solution, according to the complementary slackness conditions for this primal-dual pair of problems?
(6.) Formulate the following problem as an LP: A manufacturer must plan production of a certain item over the next 4 quarters. Each unit of the item requires 1 man-hour of labor. Labor costs are $\$ 10$ per hour regularly, or $\$ 15$ per hour for overtime. Overtime is limited to 50% of regular time available. If a unit of the item is available for sale during a quarter but is not sold, an inventory carrying cost of $\$ 2$ per unit is charged. Other data are:

Quarter	Regular Man-hrs Available	Selling Demand	Price (\$)
1	1000	1200	28
2	800	1100	26
3	900	1400	27
4	1000	1200	27

Demand limits the most which can be sold, but need not be satisfied.
Formulate a linear programming model which can determine how much should be produced each quarter, and how much should be sold each quarter.

Use the following decision variables in your model:
$\mathrm{R}_{\mathrm{t}}=$ number of units of the item to be produced in quarter t , using regular time production
$\mathrm{O}_{\mathrm{t}}=$ number of units of the item to be produced in quarter t , using overtime
$S_{t}=$ number of units of the item sold during quarter t
$I_{t}=$ number of units of the item in inventory at the end of quarter t

- What is the total number of constraints (not including nonnegativity restrictions) in your model?
- What is the total number of variables (not including slack \& surplus variables) in your model?
(7.) Assignment Problem. Three machines are to be assigned to three jobs (one machine per job), so that total machine hours used is minimized. The hours required by each machine for the jobs is given in the table below.

			OB	
		1	2	3
A	A	4	2	9
H	B	2	1	5
H	C	5	2	10
E				

a. Perform the row reduction step of the Hungarian method. (Write the updated matrix below.)

b. Perform the column reduction step, and write the updated matrix below:

c. Are any further steps required? If so, perform them, and write the resulting matrices below:

		J0B		
		1	2	3
M A c	A			
H	B			
$\begin{gathered} \mathbf{1} \\ \mathbf{H} \\ \mathbf{E} \end{gathered}$	C			

d. Find the optimal assignment: Machine A performs job \qquad . Machine B performs job \qquad . Machine C performs job \qquad . Total machine hours required is \qquad .
e. This assignment problem can be modeled as an LP with \qquad constraints (plus nonnegativity) and \qquad variables. The number of basic variables will be \qquad . The optimal solution is referred to as a(n) \qquad solution.
(8.) Consider the project with the network given below. Times required for the activities appear on the arrows.

a. How many activities (i.e., tasks), not including "dummies", are required to complete this project? \qquad
b. Complete the computation of the earliest \& latest times for the events (indicated in the boxes \& circles, respectively), and write the values in the circles \& boxes above. There are three values to be computed!
c. Find the slack ("total float") for activity represented by the arrow $(4,6)$. \qquad
d. How many activities are critical? \qquad
e. What is the earliest completion time for the project? \qquad
f. Suppose that the times of activities $(2,3)$ and $(5,6)$ are not certain, but are random variables with expected values 8 and 12 , respectively, and with standard deviations 4 and 5, respectively.
Then, if the assumptions of PERT are satisfied, what is the probability distribution of the project completion time? (Specify the type of distribution and its parameters.) \qquad

