$\qquad$


- Write your name on the first page, and initial the other pages.
- Answer all questions. Possible
A. True/False
B. Multiple Choice
C. Sensitivity analysis (LINDO)
total possible:


Score
$\qquad$
$\qquad$
-
(A.) True/False: Indicate by " + " ="true" or "о" ="false" :

1. A "dummy" activity in CPM has duration zero and cannot be on the critical path.
2. In PERT, the total completion time of the project is assumed to be a random variable with a normal distribution.
3. A "pivot" in a nonbasic column of a tableau will make it a basic column.
4. The earliest completion time of a project could be computed by formulating an LP problem and solving it with the simplex method.

- 5. In the two-phase simplex method, Phase One computes the optimal dual variables, followed by Phase Two in which the optimal primal variables are computed.
$\qquad$ 6. "Crashing" a project is a procedure for allowing additional time for critical activities.

7. In CPM, the "backward pass" is used to determine the latest time (LT) for each event (node).
$\qquad$ 8. Considered as an LP problem, every basic feasible solution of an assignment problem is degenerate.
_ 9. The "minimum ratio test" is used to determine the pivot row in the simplex method.
8. During any iteration of the simplex method, if $x_{j}$ is the variable entering the basis, the improvement in the cost function resulting from the pivot is the value of the reduced cost.
$\qquad$ 11. In applying the Hungarian method to an assignment problem, the number of iterations required may depend upon the degree of degeneracy of the problem.
$\qquad$ 12. Before you enter an LP formulation into LINDO, you must first convert all inequalities to equations.
9. The A-O-N project network does not require any "dummy" activities, except for the "begin" and "end" activities.
10. The revised simplex method, unlike the ordinary simplex method which pivots in the original tableau, leaves the original tableau unchanged.
11. If an artificial variable is nonzero in the optimal solution of an LP problem, then the problem has no feasible solution.
12. At the end of the first phase of the two-phase simplex method, the phase-one objective function must be zero if the LP is feasible.
13. If a zero appears on the right-hand-side of row $i$ of an LP tableau, then at the next iteration you must pivot in row i .
14. In the Hungarian method, no further reduction of the cost matrix is necessary if the number of lines required to cover the zeroes is less than the number of rows in the cost matrix.
15. In a transportation problem, if the total demand exceeds total supply, a "dummy" destination should be defined.
16. In a transportation problem, the number of basic (primal) variables is less than the number of dual variables.
$\qquad$
17. In a transportation problem, if the current dual variables $U_{2}=3$ and $\mathrm{V}_{4}=1$, and $\mathrm{C}_{24}=2$, then the current basic solution cannot be optimal.
$\qquad$ 22. In a transportation problem, if the current dual variables $\mathrm{U}_{2}=3$ and $\mathrm{V}_{4}=1$, and $\mathrm{C}_{24}=5$, then $\mathrm{X}_{24}$ cannot be basic.
18. If the "float" of an activity of a project is positive, then the activity cannot be "critical" in the schedule.
19. All tasks on the critical path of a project schedule have their latest finish time equal to their earliest finish time.
20. If a zero appears on the right-hand-side of row $i$ of an LP tableau, then at the next iteration you cannot pivot in row i.
$\qquad$ 26. When you enter an LP formulation into LINDO, you must manipulate your equality constraints so that all variables appear on the left, and all constants on the right of the " $=$ ". 27. A transportation problem is called "balanced" if the number of supply points equals the number of demand points.
21. When maximizing in the simplex method, the value of the objective function cannot improve at the next pivot if the current tableau is degenerate.
22. When minimizing in the simplex method, the cost may be improved by selecting any column having a negative reduced cost as the pivot column.
23. A basic solution of an LP is always feasible, but not all feasible solutions are basic.
24. The optimal value of a primal minimization LP problem is less than or equal to the objective value of every dual feasible solution.
25. The optimal values of the primal and dual LP problems, if they exist, must be equal.
26. If a primal minimization LP problem has a cost which is unbounded below, then the dual maximization problem has an objective which is unbounded above.
27. If $\mathrm{X}_{\mathrm{ij}}=0$ in the transportation problem, then dual variables U and V must satisfy $\mathrm{C}_{\mathrm{ij}}=\mathrm{U}_{\mathrm{i}}+\mathrm{V}_{\mathrm{j}}$. 35. In project scheduling, the problem of finding the earliest completion time for the project can be stated as an LP, with a dual LP which will find the length of the longest path from beginning to ending of the project.
28. The reduced cost of a slack variable in row $i$ is the simplex multiplier $\pi_{i}$ for that row (if ${ }^{-} z$ is used as the basic variable in the objective row).
29. At the completion of the revised simplex method applied to an LP, the simplex multipliers give the optimal solution to the dual of the LP.
30. In the revised simplex method, before entering variable $\mathrm{X}_{\mathrm{j}}$ into the basis, the substitution rates (necessary for the minimum ratio test) are computed by multiplying the basis inverse matrix times the original column of constraint coefficients for $\mathrm{X}_{\mathrm{j}}$.
31. One advantage of the revised simplex method is that it does not require the use of artificial variables.
32. If you change the objective coefficients of an LP which you solved yesterday, you can use yesterday's optimal solution as the starting basic feasible solution to solve the new problem today.
33. If the simplex method is applied to the transportation problem, all of the "substitution rates" which are computed for the optimal solution will be either $+1,-1$, or zero.
34. In the LP formulation of the project scheduling problem, the constraints include $Y_{A}-Y_{B}=$ $\mathrm{d}_{\mathrm{A}}$ if activity A must precede activity B, where $\mathrm{d}_{\mathrm{A}}$ is the given duration of activity A.
35. Bayes' Rule can be used for revising one's estimates of the defective rate of a manufacturing process after one has inspected a sample of items obtained from the process.
$\qquad$
36. If you increase the right-hand-side of a "less-than-or-equal" constraint in a minimization LP, the optimal objective value will either increase or stay the same.
37. The "reduced cost" in LP provides an estimate of the change in the objective value when a right-hand-side of a constraint changes.
38. The transportation problem is a special case of an assignment problem.

## 

(B.) Multiple Choice: Write the appropriate letter (a, b, c, d, or e) : (NOTA =None of the above).

1. If, in the optimal primal solution of an LP problem (min cx st Ax $\leq \mathrm{b}, \mathrm{x} 0$ ), there is zero slack in constraint \#1, then in the optimal dual solution,
(a) dual variable \#1 must be zero
(c) slack variable for dual constraint \#1 must be zero
(b) dual variable \#1 must be positive
(d) dual constraint $\# 1$ must be slack
(e) $N O T A$
$\qquad$ 2. If, in the optimal dual solution of an LP problem (min cx st $\mathrm{Ax} \leq \mathrm{b}, \mathrm{x} 0$ ), variable \#2 is positive, then in the optimal primal solution,
(a) variable \#2 must be zero
(c) slack variable for constraint \#2 must be zero
(b) variable \#2 must be positive
(d) constraint \#2 must be slack
(e) NOTA
_ 3. If you make a mistake in choosing the pivot row in the simplex method, the solution in the next tableau
(a) will be nonbasic
(c) will have a worse objective value
(b) will be nonfeasible
(d) will be degenerate
(e) $N O T A$
$\qquad$ 4. If you make a mistake in choosing the pivot column in the simplex method, the solution in the next tableau
(a) will be nonbasic
(c) will have a worse objective value
(b) will be nonfeasible
(d) will be degenerate
(e) NOTA
2. If there is a tie in the "minimum-ratio test" of the simplex method, the solution in the next tableau
(a) will be nonbasic
(c) will have a worse objective value
(b) will be nonfeasible
(d) will be degenerate
(e) NOTA

The problems (6)-(10) below refer to the following LP:
(with inequalities converted to equations:)

$$
\begin{aligned}
& \text { Minimize } 8 \mathrm{X}_{1}+4 \mathrm{X}_{2} \\
& \text { subject to } 3 \mathrm{X}_{1}+4 \mathrm{X}_{2} \leq 6 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \mathrm{X}_{1}+2 \mathrm{X}_{2} \leq 10 \\
& \\
& \mathrm{X}_{1} \quad 0, \mathrm{X}_{2} \leq \\
&
\end{aligned}
$$

```
Minimize 8x
    subject to 3\mp@subsup{x}{1}{}+4\mp@subsup{x}{2}{}-\mp@subsup{x}{3}{}=6
        5x}+2+2\mp@subsup{x}{2}{}+\mp@subsup{x}{4}{}=1
\[
x_{1}+4 x_{2} \leq 4 \quad x_{1}+4 x_{2}+x_{5}=4
\]
        \mp@subsup{x}{1}{}+4\mp@subsup{x}{2}{}}+\mp@subsup{X}{5}{}=
        Xj 0, j=1,2, 3,4,5
```

$\qquad$

6 .The feasible region includes points
(a) $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$
(c) $\mathrm{C}, \mathrm{E}, \& \mathrm{~F}$
(b) $\mathrm{B}, \mathrm{F}, \& \mathrm{G}$
(d) $\mathrm{B}, \mathrm{D}, \& \mathrm{G}$
(e) NOTA
7. At point F , the basic variables include the variables
(a) $\mathrm{X}_{2} \& \mathrm{X}_{3}$
(c) $\mathrm{X}_{4} \& \mathrm{X}_{5}$
(b) $\mathrm{X}_{3} \& \mathrm{X}_{4}$
(d) $X_{1} \& X_{4}$
(e) NOTA
8. Which point is degenerate in the primal problem?
(a) point A
(c) point C
(b) point B
(d) point D
(e) NOTA
9. If point F is optimal, then which dual variables must be zero, according to the Complementary Slackness Theorem?
(a) $\mathrm{Y}_{1}$ and $\mathrm{Y}_{2}$
(d) $\mathrm{Y}_{1}$ only
(b) $\mathrm{Y}_{1}$ and $\mathrm{Y}_{3}$
(e) $\mathrm{Y}_{2}$ only
(c) $\mathrm{Y}_{2}$ and $\mathrm{Y}_{3}$
(f) $\mathrm{Y}_{3}$ only
10. For each alternative pair in parentheses, check the appropriate choice to obtain the dual LP of the above primal problem (with the inequality constraints):


## 

## (C.) Sensitivity Analysis in LP.

"A manufacturer produces two types of plastic cladding. These have the trade names Ankalor and Beslite. One yard of Ankalor requires 8 lb of polyamine, 2.5 lb of diurethane and 2 lb of monomer. A yard of Beslite needs 10 lb of polyamine, 1 lb of diurethane, and 4 lb of monomer. The company has in stock $80,000 \mathrm{lb}$ of polyamine, $20,000 \mathrm{lb}$ of diurethane, and $30,000 \mathrm{lb}$ of monomer. Both plastics can be produced by alternate parameter settings of the production plant, which is able to produce sheeting at the rate of 12 yards per hour. A total of 750 production plant hours are available for the next planning period. The contribution to profit on Ankalor is $\$ 10 /$ yard and $\$ 20 /$ yard on Beslite.
The company has a contract to deliver at least 3,000 yards of Ankalor. What production plan should be implemented in order to maximize the contribution to the firm's profit from this product division."
Definition of variables:
$\qquad$
$A=$ Number of yards of Ankalor produced
$B=$ Number of yards of Beslite produced

LP model: 1) Maximize $10 \mathrm{~A}+20 \mathrm{~B}$ subject to

| 2) | $8 \mathrm{~A}+10 \mathrm{~B}$ | $=80,000$ |  | (lbs. Polyamine available) |
| :--- | ---: | :--- | :--- | :--- |
| $3)$ | $2.5 \mathrm{~A}+1 \mathrm{~B}$ | $=20,000$ |  | (lbs. Diurethane available) |
| 4) | $2 \mathrm{~A}+4 \mathrm{~B}$ | $=30,000$ |  | (lbs. Monomer available) |
| 5) | $\mathrm{A}+\mathrm{B}$ | $=9,000$ |  | (lbs. Plant capacity) |
| 6) | A |  | $=3,000$ |  |
| (Contract) |  |  |  |  |

$$
\mathrm{A}=0, \mathrm{~B}=0
$$

The LINDO solution is: objective function value

| 1) | 142000.000 |  |
| :---: | :---: | :---: |
| VARIABLE | VALUE | REDUCED COST |
| A | 3000.000 | 0.000 |
| B | 5600.000 | 0.000 |
|  |  |  |
| ROW | SLACK OR SURPLUS | DUAL PRICES |
| 2) | 0.000 | 2.000 |
| 3) | 6900.000 | 0.000 |
| 4) | 1600.000 | 0.000 |
| 5) | 400.000 | 0.000 |
| 6) | 0.000 | -6.000 |

RANGES IN WHCH THE BASIS IS UNCHANGED


Consult the LINDO output above to answer the following questions. If there is not sufficient information in the LINDO output, answer "NSI".

1. How many yards of Beslite should be manufactured?
a. 3000 yards
c. 5600 yards
e. NSI
b. 1600 yards
d. 400 yards
2. How much of the available diurethane will be used?
$\qquad$
a. 6900 pounds
c. 13100 pounds
e. NSI
b. 1600 pounds
d. 400 pounds
3. How much of the available diurethane will be unused?
a. 6900 pounds
c. 13100 pounds
e. NSI
b. 1600 pounds
d. 400 pounds
4. Suppose that the company can purchase 2000 pounds of additional polyamine for $\$ 2.50$ per pound. Should they make the purchase? a. yes $\begin{array}{llll}\text { b. no } & \text { c. NSI }\end{array}$ 5. If the profit contribution from Beslite were to decrease to $\$ 12 /$ yard, will the optimal solution change? a. yes b. no c. NSI
5. If the profit contribution from Ankelor were to increase to $\$ 15 / \mathrm{y}$ ard, will the optimal solution change? a. yes b. no c. NSI
6. Suppose that the company could deliver 1000 yards less than the contracted amount of Ankalor by paying a penalty of $\$ 5 /$ yard shortage. Should they do so?
a. yes b. no c. NSI
7. Regardless of your answer in (7), suppose that they do deliver 1000 yards less Ankalor. This is equivalent to
a. increasing the slack in row 6 by 1000
d. decreasing the surplus in row 6 by 1000
b. increasing the surplus in row 6 by 1000
e. none of the above
c. decreasing the slack in row 6 by 1000
f. $N S I$
8. If the company delivers 1000 yards less of Ankalor, how much Beslite should they deliver?
a. 800 yards
d. 6400 yards
b. 4800 yards
e. none of the above
c. 5600 yards
f. NSI
9. How will the decision to deliver 1000 yards less Ankalor change the quantity of diurethane used during the next planning period?
a. increase by 1700 pounds
d. decrease by 2500 pounds
b. decrease by 1700 pounds
e. none of the above
c. increase by 2500 pounds
f. NSI
