	l Operations Re	search	
Mice State Stat	lterm Exam Solu	itions IDIDI	
	Fall 1994		
		Possible	Score
A. True/False & Multiple Ch	oice	30	
B. Sensitivity analysis (LIND	OO)	20	
C.1. Transportation		15	
C.2. Decision Tree		15	
C.3. Simplex LP Method		15	
tota	al possible:	80	
	DDD Part A		

True/False:

- <u>True</u> 1. A "pivot" in a nonbasic column of an LP simplex tableau will make it a basic column.
- <u>True</u> 2. If you increase the right-hand-side of a "greater-than-or-equal" constraint in a minimization LP, the optimal objective value will either increase or stay the same.
- <u>False</u> 3. The "reduced cost" in LP provides an estimate of the change in the objective value when a right-hand-side of a constraint changes.
- <u>False</u> 4. In the two-phase simplex method, Phase One computes the optimal dual variables, followed by Phase Two in which the optimal primal variables are computed.
- <u>True</u> 5. At the completion of the revised simplex method applied to an LP, the simplex multipliers give the optimal solution to the dual of the LP.
- <u>True</u> 6. In the LP formulation of the project scheduling problem, the constraints include $Y_B Y_A = d_A$ if activity A must precede activity B, where $d_A =$ duration of activity A.
- <u>False</u> 7. In CPM, the "forward pass" is used to determine the latest time (LT) for each event (node).
- True 8. The "minimum ratio test" is used to determine the pivot row in the simplex method.
- <u>True</u> 9. The A-O-N project network does not require any "dummy" activities, except for the "begin" and "end" activities.
- <u>True</u> 10. At the end of the first phase of the two-phase simplex method, the phase-one objective function must be zero if the LP is feasible.
- <u>False</u> 11. In a transportation problem, if the current dual variables $U_2=3$ and $V_4=1$, and $C_{24}=5$, then the current basic solution *cannot* be optimal.
- <u>True</u> 12. In a transportation problem, if the current dual variables $U_2=3$ and $V_4=1$, and $C_{24}=5$, then X_{24} *cannot* be basic.
- <u>True</u> 13. All tasks on the critical path of a project schedule have their latest finish time equal to their earliest finish time.
- <u>True</u> 14. A "dummy" activity in an A-O-A project network always has duration zero, but can be on the critical path.
- <u>False</u> 15. If a zero appears on the right-hand-side of row i of an LP tableau, then at the next simplex iteration you *cannot* pivot in row i.
- <u>False</u> 16. When maximizing in the simplex method, the value of the objective function will not improve at the next pivot if the current tableau is degenerate.
- False 17. When minimizing in the simplex method, you must select the column which has the smallest (i.e., the most negative) reduced cost as the next pivot column.
- <u>True</u> 18. If the "float" ("slack") of an activity of a project is positive, then the activity cannot be "critical" in the schedule.
- <u>False</u> 19. If a primal minimization LP problem has a cost which is unbounded below, then the dual maximization problem has an objective which is unbounded above.

<u>False</u> 20. If $X_{ij}=0$ in the transportation problem, then dual variables U and V *must* satisfy $C_{ii}=U_i+V_i$.

Multiple Choice: Write the appropriate letter (a, b, c, d, or e) : (*NOTA* = \underline{N} one \underline{of} the \underline{a} bove). e 21. If, in the optimal *primal* solution of an LP problem (min cx st Ax \leq b, x \geq 0), there is zero slack in constraint #1, then in the optimal dual solution, (a) dual variable #1 must be zero (c) slack variable for dual constraint #1 must be zero (b) dual variable #1 must be positive (d) dual constraint #1 must be slack (e) NOTA <u>c</u> 22. If, in the optimal *dual* solution of an LP problem (min cx st Ax \leq b, x \geq 0), variable #2 is positive, then in the optimal primal solution, (a) variable #2 must be zero (c) slack variable for constraint #2 must be zero (b) variable #2 must be positive (d) constraint #2 must be slack (e)NOTA b 23. If you make a mistake in choosing the pivot row in the simplex method, the solution in the next tableau (a) will be nonbasic (c) will have a worse objective value (d) will be degenerate (b) will be nonfeasible (e) NOTA 24. If you make a mistake in choosing the pivot column in the simplex method, the solution <u>c</u> in the next tableau will (a) be nonbasic (c) have a worse objective value (b) be nonfeasible (d) be degenerate (e) NOTA _d_ 25. If there is a tie in the "minimum-ratio test" of the simplex method, the solution in the next tableau (a) will be nonbasic (c) will have a worse objective value (b) will be nonfeasible (d) will be degenerate (e) NOTA

The problems (26)-(30) below refer to the following LP: (with inequalities converted to equations:) Maximize $3X_1 + 2X_2$ Maximize $3X_1 + 2X_2$

Solutions

<u> </u>	27. At point G, the basic variab	les <u>include</u> the variables
	(a) $X_2 \& X_3$ (c) $X_1 \& X_5$	
	(b) $X_3 \& X_4$ (d) $X_1 \& X_4$	(e) <i>NOTA</i>
<u>e</u>	28. Which point is degenerate in	this problem?
	(a) point B (c) point H	
	(b) point G (d) point I	(e) <i>NOTA</i>
<u>f</u>	29. If point G is optimal, then w	hich dual variables must be zero, according to the
	Complementary Slackness Theor	em?
	(a) both Y_1 and Y_2	(d) Y_1 only
	(b) both Y_1 and Y_3	(e) Y_2 only
	(c) both Y_2 and Y_3	(f) Y ₃ only
30. For eac	ch alternative pair in parentheses,	check the appropriate choice to obtain the dual LP of
	ove primal problem (with the inequ	
(Max/ X Min)	$100Y_1 + 80Y_2 + 40Y_3$

LINDO analysis

Problem Statement: McNaughton Inc. produces two steak sauces, spicy Diablo and mild Red Baron. These sauces are both made by blending two ingredients A and B. A certain level of flexibility is permitted in the formulas for these products. Indeed, the restrictions are that:

i) Red Baron must contain no more than 75% of A.

D = auarts of Diablo to be produced

ii) Diablo must contain no less than 25% of A and no less than 50% of B

Up to 40 quarts of A and 30 quarts of B could be purchased. McNaughton can sell as much of these sauces as it produces at a price per quart of \$3.35 for Diablo and \$2.85 for Red Baron. A and B cost \$1.60 and \$2.05 per quart, respectively. McNaughton wishes to maximize its net revenue from the sale of these sauces.

Define

Dejine	D = quarts 0 f Diab	no io de produced								
	R = quarts of Red Baron to be produced									
	AD= quarts of A used to make Diablo									
	$AR = quarts \ of A \ u$	sed to make Red Baron								
	BD = quarts of B u	ised to make Diablo								
	BR = quarts of B u	sed to make Red Baron								
The LINDO	output for solving this	problem follows:								
	1 0 1	6 AD - 1.6 AR - 2.05 BD - 2.05 BR								
SUBJECT T										
2	- D + AD + BD =	0								
,	- R + AR + BR =	0								
	AD + AR <= 40	0								
	BD + BR <= 30									
,		0								
	-0.25 D + AD >= - 0.5 D + BD >=									
,	-0.5 D + BD >= - 0.75 R + AR <=	0								
	-0.75 R + AR <=	0								
END										
	OBJECTIVE FUNCTION '	VALUE								
1)	99.000000									
VARIABLE	VALUE	REDUCED COST								
D	50.00000	0.00000								
R	20.000000	0.00000								
AD	25.000000	0.00000								

AR	15.000000	
BD	25.00000	
BR	5.000000	
ROW	SLACK OR SURPLUS	
2)	0.00	-2.350000
3)		-4.350000
4)		0.750000
5)		2.300001
б)		0.00000
7)		-1.999999
8)		2.000000

RANGES IN WHICH THE BASIS IS UNCHANGED

VARIABLE	CURRENT		ALLOWABLE
	COEF	INCREASE	
D	3.350000		0.500000
R		0.500000	0.375000
	-1.600000	1.500001	
AR	-1.600000		0.500000
BD		1.500001	1.00000
	-2.050000	1.000000	

	RIGHTHAND	SIDE RANGES	
ROW		ALLOWABLE	ALLOWABLE
	RHS	INCREASE	
2	0.00000		10.00000
3		16.666668	3.333333
	40.00000	50.00000	
5	30.00000		16.666664
6		12.500000	INFINITY
	0.00000	6.250000	
8	0.00000		12.500000

THE TABLEAU:

	(BASIS) D		AD	AR		BR	SLK 4		SLK 6
1		0.000	0.000		0.000	0.000		0.750	2.300	
2	AD		0.000	1.000		0.000	0.000		1.500	0.000
	R	0.000	00	0.000		0.000	0.000		-2.000	0.000
	AR	0.000		0.000	1.000		0.000	1.500		0.000
5		0.000	0.000		0.000	0.000		0.500	-0.500	
6	SLK 6		0.000	0.000		0.000	0.000		0.750	1.000
	D	1.000		0.000	0.000		0.000	-1.000	3.000	
8	BD		0.000	0.000		1.000	0.000		1.500	0.000
	SLK 7	SL	K 8							
1	2.000			99.00	0					
2		2.0	000	25.00	0					
	-4.000	-4.0	000							
4	-3.000			15.00	0					
5		-2.0	000	5.00	0					
	2.000	1.0	000							
7	4.000			50.00	0					
8		2.0	000	25.00	0					

20 quarts

99.00___

additional amount should the firm be willing to pay to have another quart of ingredient $\frac{2.30}{\text{thetotal}}$

\$<u>4.35</u>

How many quarts should they be willing to buy at this price? <u>10 quarts</u>

(___increase/___decrease) the "slack variable" in row #5 by _one

5. Using one more quart of ingredient B (i.e., a total of 31 quarts) would result the following changes in the variables:

	(<u>X</u> <u>0.75</u>	
• the quantity of A used in producing "Red	Baron"? (increase/ X_decrease) by	
• the quantity of A used in producing "	(<u>X</u> <u>1.5</u>	
Diablo" produced?	(increase/decrease) by <u>3.0</u>	
• the total quantity of "Red Baron" produce	ed? (increase/ X_decrease) by	
6. How much can the price of "Red Baron" incre	ease before the composition of the current	
0.50		
problem? \$ <u>99.00</u>	\underline{X} minimized /maximized.	

(C.1) **Transportation Problem.** Consider the problem with the initial solution specified on the left below:

- 1. Is this a basic solution? (*circle:* <u>Yes</u> / No)
- 2. Is this a degenerate solution? (*circle:* Yes / No)
- 3. If the dual variable u_1 (for supply constraint #1) were assigned the value zero, the values of the other dual variables are: $u_2 = -2$, $u_3 = \underline{-3}$, $v_1 = +5$, $v_2 = \underline{+7}$, $v_3 = +9$, $v_4 = \underline{-+2}$.
- 5. If X_{33} were to enter the basis, what would be its new value? <u>1</u>
- 6. If X₃₃ were to enter the basis, what variable(s) would leave the basis?

Circle as many as apply: $X_{13} X_{14} X_{21} X_{22} \underline{X_{23}} X_{31}$

- 7. If X_{33} were to enter the basis, would the new basic solution be degenerate? (*circle:* Yes / <u>No</u>)
- 8. Which other variable *instead* of X_{33} would result in a degenerate basic solution if it were to
- enter the basis? Circle as many as apply: $X_{11} X_{12} X_{24} X_{32} X_{33} X_{34}$ none
- 9. What is the cost of the initial solution shown above? <u>81</u>

C.2. Decision Tree. The decision sciences department is trying to determine which of two copying machines to purchase. Both machines will satisfy the department's needs for the next **ten** years.

Machine 1 costs \$3000 and has a maintenance agreement, which, for an annual fee of \$100, covers all repairs. Machine 2 costs \$2500, and its annual maintenance cost is a random variable. At present, the decision sciences department believes there is a 40% chance that the annual cost for machine 2 will be \$0, a 40% chance it will be \$100, and a 20% chance it will be \$200.

For a fee of \$100 the department can have Joe, a trained repairman, evaluate the quality of machine 2 before the purchase decision is made. If Joe believes that machine 2 is *satisfactory*, there is a 70% chance that its annual maintenance cost will be \$0 and a 30% chance that it will be \$100. If Joe believes that machine 2 is *unsatisfactory*, there is a 10% chance that the annual maintenance cost will be \$0, a 40% chance it will be \$100, and a 50% chance it will be \$200. The department believes that there is a 70% probability that Joe will give a satisfactory report after evaluating machine 2. Based upon this data, the decision tree below is drawn:

Fill the blank boxes in the decision tree above and answer the following questions: <u>d</u> 1. If Joe's evaluation of machine 2 is "unsatisfactory" and they were to select machine 2, what would be their expected cost (including the cost of Joe's evaluation)?

	-		
	a. \$ 2600	c. \$ 3300	e. \$ 4500
	b. \$ 2900	d. \$ 4000	f. NOTA
<u>e</u>	2. This computati	ion is referred to as "folding back"	which node in the tree above?
	a. Node # 4	c. Node #6	e. Node #8
	b. Node # 5	d. Node #7	f. NOTA
C	2 What is EVICE (1 ()0

<u>f</u> 3. What is EVSI (i.e., the expected value of Joe 's evaluation)?

a. negative \$30	c. \$40	e. \$ 120
b. negative \$20	d. \$ 70	f. NOTA
Question #4 was disregarded	the answer depend	s upon the report of the repairman!
4. Which machine should	the department buy	?
a. Machine #1		c. a "toss-up"

b. Machine #2

d. *NOTA*

Suppose that the department were able to get "perfect information", i.e., a perfect prediction of the annual maintenance costs. Based upon this supposition, the department head drew the decision tree below:

Fill the blank boxes in the decision tree above and answer the following questions: <u>c</u> 5. What is the minimum expected cost to the department if they were able to obtain this perfect prediction?

perfect prediction?		
a. \$ 2600	c. \$ 3200	e. \$ 4500
b. \$ 2900	d. \$ 4000	f. NOTA
<u>b</u> 6. What is EVPI (expect	ed value of perfect informatio	on)?
a. \$ 70	c. \$ 150	e. \$ 300
b. \$ 100	d. \$ 200	f. NOTA

C.3. Simplex Algorithm for LP: At an intermediate step of the simplex algorithm, the tableau is:

-z	x ₁	×2	x3	×4	x5	х _б	X7	x8	RHS
	2 -4								
0	1	-1	0	1	0	-1	0	-1	2
0	2	0	0	0	1	-3	3	2	6

- 1. What are the basic variables for this tableau? (*circle*: $X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8 RHS$)
- 2. What are the current values of the variables?

 $X_1 = 0, X_2 = 0, X_3 = 4, X_4 = 2, X_5 = 6, X_6 = 0, X_7 = 0, X_8 = 0$

- 3. Increasing X_1 would (*circle*: <u>increase</u> / decrease) the objective function.
- 4. Increasing X_6 would (circle: increase / <u>decrease</u>) the objective function.

- 5. What is the substitution rate of X_1 for X_3 ? ____ That is, if X_1 is increased by 1 unit, X_3 (*circle*: <u>increases</u> / decreases) by a quantity _4__.
- 6. Suppose that X_6 and X_7 are slack variables in the first 2 constraints, and X_8 a surplus variable in the the last constraint. (That is, the first two constraints were originally constraints, and the third was originally a constraint, all converted to equations.) What are the values of the simplex multipliers for this tableau? 1 = -+3, 2 = -1, 3 = -2
- 7. If the objective is to (*circle:* maximize / <u>minimize</u>) the objective z, the optimal solution is unbounded.

8. If the objective is <u>not</u> that which you specified in (7), perform a pivot to improve the objective function, and write the new tableau below. (*You need only complete the unshaded portion.*)

If the objective is the maximize, then either X_1 or X_7 could be selected to enter the basis.

	-Z	X_1	X ₂	X3	X_4	X5			RHS
If X ₁ is entered into the basis:				0	-2	0			-19
				1	4	0			
				0	1	0			
				0	-2	1			
	-Z	X_1	X2	X3	X_4	X5		· · ·	RHS
If X ₇ is				- 1	0	0			-19
entered into the basis:				1	0	0			
				0	1	0			
				-3	0	1			