56:171
Operations Research
Fall 2000

Quiz Solutions

[^0]56:171 Operations Research
Quiz \#1 Solutions - August 30, 2000

For each statement, indicate " + "=true or $\mathrm{n} \mathrm{o} "=$ false.
version a:
__o_ 1. When you enter an LP formulation into LINDO, you must first convert all inequalities to equations.
__o_ 2. When you enter an LP formulation into LINDO, you must include any nonnegativity constraints.
__ \pm 3. When you enter an LP formulation into LINDO, you must manipulate your constraints so that all variables appear on the left, and all constants on the right.
$\ldots \pm$ 4. LINDO would interpret the constraint " $\mathrm{X} 1+2 \mathrm{X} 2>10$ " as " $\mathrm{X} 1+2 \mathrm{X} 2 \geq 10$ ".

version b:

$\ldots \pm$ 1. LINDO would interpret the constraint " $\mathrm{X} 1+2 \mathrm{X} 2>10$ " as " $\mathrm{X} 1+2 \mathrm{X} 2 \geq 10$ ".
$\ldots \pm 2$. When you enter an LP formulation into LINDO, you need not explicitly include any nonnegativity constraints.
__o_ 3. When you enter an LP formulation into LINDO, you must first convert all inequalities to equations.
_ \pm _ 4. When you enter an LP formulation into LINDO, you must manipulate your constraints so that all variables appear on the left, and all constants on the right.

```
<><><><><><<><><><><><>
```

Walnut Orchard has two farms that grow wheat and corn. Because of differing soil conditions, there are differences in the yields and costs of growing crops on the two farms. The yields and costs are shown in the table below. Farm \#1 has 100 acres available for cultivation, while Farm \#2 has 150 acres. The farm has contracted to grow 11,000 bushels of corn and 6000 bushels of wheat. Determine a planting plan that will minimize the cost of meeting these contracts.

	Farm \#1	Farm \#2
Corn yield/acre	100 bushels	120 bushels
Cost/acre of corn	$\$ 90$	$\$ 115$
Wheat yield/acre	40 bushels	35 bushels
Cost/acre of wheat	$\$ 90$	$\$ 80$

Decision variables:

C1 = \# of acres of Farm 1 planted in corn
W1 = \# of acres of Farm 1 planted in wheat
C2 = \# of acres of Farm 2 planted in corn
W2 = \# of acres of Farm 2 planted in wheat

The model \& LINDO output is below:

```
MIN }90\textrm{C}1+115\textrm{C}2+90\textrm{W}1+80\textrm{W}
    SUBJECT TO
            2) C1 + W1 <= 100
            3) }\textrm{C}2+\textrm{W}2<=\quad\overline{150
            4) }100\textrm{C}1+120\overline{\textrm{C}2}>=1100
            5) 40 W1 + 35 W2 >= 6000
    END
```

5. Complete the right-hand-sides above.

OBJECTIVE FUNCTION VALUE		
1)	24096.15	
VARIABLE	VALUE	REDUCED COST
C1	3.846154	0.000000
C2	88.461540	0.000000
W1	96.153847	0.000000
W2	61.538460	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.000000	17.692308
3)	0.000000	14.230769
$4)$	0.000000	-1.076923
5)	0.000000	-2.692308

6. version a:

The optimal solution is to plant __ 3.846 acres of Farm\#1 in corn and _96.154_ acres in wheat.
version b :
The optimal solution is to plant 88.461 acres of Farm\#2 in corn and 61.438 acres in wheat.
7. version a: A total of $\underline{92.3077}$ acres will be planted in corn.
version b: A total of $\underline{157.692}$ acres will be planted in wheat.
8. The total cost of satisfying the grain contracts is $\$ 24,096.15$.

Multiple choice:

e 9. The additional restriction that the planted acres of Farm \#1 cannot be more than 75% wheat could be stated as the linear inequality:
a. W1 ≤ 75
d. $\mathrm{C} 1 \geq 25$
b. $25 \mathrm{~W} 1-75 \mathrm{C} 1 \leq 0$
e. $25 \mathrm{~W} 1-75 \mathrm{C} 1 \geq 0$
c. $75 \mathrm{~W} 1-25 \mathrm{C} 1 \geq 0$
f. $75 \mathrm{~W} 1-25 \mathrm{C} 1 \leq 0$

Note:

$$
\frac{W 1}{W 1+C 1} \leq 0.75 \Rightarrow W 1 \leq 0.75(W 1+C 1) \Rightarrow 0.25 W 1-0.75 C 1 \leq 0
$$

56:171 Operations Research

Quiz \#2 Solution - September 13, 2000

Below are several simplex tableaus. Assume that the objective in each case is to be minimized. Classify each tableau by writing to the right of the tableau a letter A through \mathbf{G}, according to the descriptions below. Also answer the question accompanying each classification, if any.
(A) Nonoptimal, nondegenerate tableau with bounded solution. Circle a pivot element which would improve the objective.
(B) Nonoptimal, degenerate tableau with bounded solution. Circle an appropriate pivot element.
(C) Unique optimum.
(D) Optimal tableau, with alternate optimum. Circle a pivot element which would lead to another optimal basic solution.
(E) Objective unbounded (below). Specify a variable which, when going to infinity, will make the objective arbitrarily low.
(F) Tableau with infeasible primal

Warning: Some of these classifications might be used for more than one tableau, while others might not be used at all

(1)	-z	X_{1}	x_{2}	X_{3}	X_{4}	X_{5}	x_{6}	X_{7}	X_{8}	RHS	
	1	3	0	-1	3	0	0	2	2	-36	- B $^{-}$
	0	3	0	4	0	0	1	3	0	9	
	0	-1	1	$\frac{2}{3}$	-5	0	0	-2	1	0	
	0	6	0		-2	1	0	-4	3	5	
(2)	-z	x_{1}	x_{2}	x_{3}	X_{4}	X_{5}	x_{6}	x_{7}	x_{8}	RHS	
	1	3	0	1	3	0	0	2	-2	-36	A_-
	0	3	0	4	0	0	1	3	0	9	
	0	-1	1	-2	-5	0	0	-2	1	4	
	0	6	0	3	-2	1	0	-4	3	5	
(3)	-z	X_{1}	x_{2}	x_{3}	x_{4}	X_{5}	x_{6}	X_{7}	X_{8}	RHS	
	1	3	0	-1	3	0	0	2	2	-36	- B $^{-}$
	0	3	0	4	0	0	1	3	0	9	
	0	-1	1	$\begin{array}{r} -2 \\ 3 \end{array}$	-5	0	0	-2	1	0	
	0	6	0		-2	1	0	-4	3	5	
(4)	-z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	RHS	
	1	3	0	-1	3	0	0	2	2	-36	E
	0	3	0	-4	0	0	1	3	0	9	
	0	-1	1	-2	-5	0	0	-2	1	4	
	0	6	0	0	-2	1	0	-4	3	5	
(5)	-z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	x_{6}	X_{7}	X_{8}	RHS	
	1	3	0	-1	3	0	0	2	2	-36	_-F_
	0	3	0	4	1	0	1	3	0	9	
	0	-1	1	-2	-5	0	0	-2	1	-4	
	0	6	0	3	2	1	0	-4	3	5	

(6)		X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	RHS	
	1	0	0	1	3	0	0	2	2	-36	- D_-
	0	3	0	4	0	0	1	3	0	9	
	0	-1	1	-2	-5	0	0	-2	1	4	
	0	6	0	3	-2	1	0	-4	3	5	
(7)	-z	x_{1}	x_{2}	x_{3}	X_{4}	X_{5}	x_{6}	x_{7}	X_{8}	RHS	
	1	3	0	1	3	0	0	2	2	-36	_-
	0	3	0	4	0	0	1	3	0	9	
	0	-1	1	-2	-5	0	0	-2	1	4	
	0	6	0	3	-2	1	0	-4	3	5	

True (+) or False (o)?

\qquad 8. If, when solving an LP by the simplex method, you make a mistake in choosing a pivot column, the resulting tableau is infeasible. Note: Objective will get worse, not better!

9. An LP with 5 variables and 2 equality constraints can have as many as (but no more than) ten basic solutions. Note: the number of ways to choose 2 basic variables from five possible variables is $\binom{5}{2}=\frac{5!}{2!3!}=\frac{5 \times 4 \times 3 \times 2 \times 1}{(2 \times 1)(3 \times 2 \times 1)}=10$
_ \pm __10. If, when solving an LP by the simplex method, you make a mistake in choosing a pivot row, the resulting tableau is infeasible.
$+\quad$ 11. In the simplex method, every variable of the LP is either basic or nonbasic..
$\pm \pm$ 12. In the simplex tableau, the objective row is written in the form of an equation.
___ _ 13. When you enter an LP formulation into LINDO, you must first convert all inequalities to equations. Note: LINDO will perform this transformation automatically, before beginning the simplex method.
___ _ _ 14. It may happen that an LP problem has (exactly) two optimal solutions. Note: If two solutions are optimal, then the line segment (containing infinitely many points) joining them is optimal.
___ _ 15. The restriction that X 1 be nonnegative should be entered into LINDO as the constraint $\mathrm{X} 1>=0$. Note: LINDO assumes that all variables are nonnegative.
\qquad 16. A "pivot" in a nonbasic column of a tableau will make it a basic column.
$_ \pm \ldots 17$. The "minimum ratio test" is used to select the pivot row in the simplex method for linear programming.
$- \pm$ 18. In the simplex method (as described in the lectures, not the textbook), the quantity -Z serves as a basic variable, where Z is the value of the objective function.
_o - 19. Every optimal solution of an LP is a basic solution. Note: The midpoint between two optimal corner-point solutions is optimal, but not basic.

$- \pm$20. Basic feasible solutions of an LP with constraints $A x \leq b, x \geq 0$ correspond to "corner" points of the feasible region.

There are three versions of the quiz:

Primal	Dual
$\begin{array}{ll} \text { Min } \mathrm{w}=4 \mathrm{Y}_{1}+2 \mathrm{Y}_{2}-\mathrm{Y}_{3} \\ \text { s.t. } & \mathrm{Y}_{1}+2 \mathrm{Y}_{2} \leq 10 \\ & \mathrm{Y}_{1}-\mathrm{Y}_{2}+2 \mathrm{Y}_{3} \geq 8 \end{array}$ $\mathrm{Y}_{1} \leq 0, \mathrm{Y}_{3} \geq 0$ (Y_{2} is unrestricted in sign)	$\begin{array}{lc} \hline \text { Max } & 10 \mathrm{X}_{1}+8 \mathrm{X}_{2} \\ \text { s.t. } & \mathrm{X}_{1}+\mathrm{X}_{2} \geq 4 \\ & 2 \mathrm{X}_{1}-\mathrm{X}_{2}=2 \\ & 2 \mathrm{X}_{2} \leq-1 \\ & \mathrm{X}_{1} \leq 0, \mathrm{X}_{2} \geq 0 \\ \hline \end{array}$
$\begin{array}{ll} \hline \text { Min } \mathrm{w}=4 \mathrm{Y}_{1}+2 \mathrm{Y}_{2}-\mathrm{Y}_{3} \\ \text { s.t. } & \mathrm{Y}_{1}+2 \mathrm{Y}_{2} \geq 10 \\ & \mathrm{Y}_{1}-\mathrm{Y}_{2}+2 \mathrm{Y}_{3}=8 \end{array}$ $\mathrm{Y}_{1} \geq 0, \mathrm{Y}_{2} \leq 0\left(\mathrm{Y}_{3}\right.$ is unrestricted in sign)	$\mathrm{X}_{1} \geq 0, \mathrm{X}_{2}$ unrestricted in sign
$\begin{array}{ll} \text { Min } \mathrm{w}=4 \mathrm{Y}_{1}+2 \mathrm{Y}_{2}-\mathrm{Y}_{3} \\ \text { s.t. } & \mathrm{Y}_{1}+2 \mathrm{Y}_{2}=10 \\ & \mathrm{Y}_{1}-\mathrm{Y}_{2}+2 \mathrm{Y}_{3} \geq 8 \\ \mathrm{Y}_{1} \leq 0, \mathrm{Y}_{2} \geq 0 \quad\left(\mathrm{Y}_{3}\right. \text { is unrestricted in sign) } \end{array}$	$\begin{array}{lc} \text { Max } & 10 \mathrm{X}_{1}+8 \mathrm{X}_{2} \\ \text { s.t. } & \mathrm{X}_{1}+\mathrm{X}_{2} \geq 4 \\ 2 \mathrm{X}_{1}-\mathrm{X}_{2} & \leq 2 \\ & 2 \mathrm{X}_{2}=-1 \end{array}$ X_{1} unrestricted in sign, $\mathrm{X}_{2} \geq 0$

For each statement, indicate " + "=true or " $\mathrm{o} "=$ false.
$+\quad 1$. According to the Complementary Slackness Theorem, if constraint \#1 of the primal problem is slack, then variable \#1 of the dual problem must be zero.
$+\quad 2$. If you increase the right-hand-side of a " \geq " constraint in a minimization LP, the optimal objective value will either increase or stay the same.
__o_ 3. If the increase in the right-hand-side of a "tight" constraint remains less than the "ALLOWABLE INCREASE" reported by LINDO, then the optimal values of all variables will be unchanged.
Note: The basis will not change; however, if the right-hand-side b changes, then the values of the basic variables, given by $x_{B}=\left(A^{B}\right)^{-1} b$ will change.
\qquad 4. At the completion of the revised simplex method applied to an LP, the simplex multipliers give the optimal solution to the dual of the LP.
o 5. If a minimization LP problem is feasible and unbounded below, then its dual problem has an objective (to be maximized) which must be unbounded above. Note: In this case, the dual problem cannot be feasible.
__o_ 6. According to the Complementary Slackness Theorem, if variable \#1 of the primal problem is zero, then constraint $\# 1$ of the dual problem must be tight.
Note: No conclusion can be drawn in this case-- the constraint may be either slack or (in the case of degeneracy) tight.
\qquad 7. If the increase in the cost of a nonbasic variable remains less than the
"ALLOWABLE INCREASE" reported by LINDO, then the optimal values of all variables will be unchanged.
_____ 8. The "reduced cost" in an LP solution provides an estimate of the change in the objective value when a basic variable increases.
Note: The reduced cost of a basic variable is zero, and gives no information about the effect of changing that basic variable.
_ o 9. In the two-phase simplex method, Phase One computes the optimal dual variables, followed by Phase Two in which the optimal primal variables are computed.
Note: The purpose of Phase One is to get an initial basic feasible (primal) solution, usually by introducing artificial variables and then forcing them to be zero.
\qquad 10. If a minimization LP problem has a cost which is infeasible, then its dual problem cannot be feasible.
Note: In this case, the dual maximization problem might be infeasible or feasible (but if feasible, its profit must be unbounded above.)

FYI:

Maximize	Minimize
Type of constraint $\mathrm{i}:$	Sign of variable i: nonnegative $=$
\geq	unrestricted in sign nonpositive
Sign of variable $\mathrm{j}:$	Type of constraint $\mathrm{j}:$
nonnegative unrestricted in sign nonpositive	$=$
	\leq

56:171 Operations Research Quiz \#4 Solutions - Fall 2000

Consider again the LP model of PAR, Inc., which manufactures standard and deluxe golf bags:
X1 = number of STANDARD golf bags manufactured per quarter
X2 = number of DELUXE golf bags manufactured per quarter
Four operations are required, with the time per golf bag as follows:

	STANDARD	DELUXE	Available
Cut-\&-Dye	0.7 hr	1 hr	630 hrs.
Sew	0.5 hr	0.8666 hr	600 hrs.
Finish	1 hr	0.6666 hr	$708 \mathrm{hrs}$.
Inspect-\&-Pack	0.1 hr	0.25 hr	135 hrs.
Profit (\$/bag)	\$10	\$9	

LINDO provides the following output:
MAX $10 \mathrm{X1}+9 \mathrm{X} 2$
SUBJECT TO
2) $0.7 \mathrm{X1}+\mathrm{X} 2<=630$
3) $0.5 \mathrm{X1}+0.86666 \mathrm{X} 2<=600$
4) $\mathrm{X} 1+0.66666 \mathrm{X} 2<=708$
5) $0.1 \mathrm{X1}+0.25 \mathrm{X} 2<=135$

END
OBJECTIVE FUNCTION VALUE

1) 7668.01200

VARIABLE	VALUE	REDUCED COST
X1	540.003110	.000000
X2	251.997800	.000000
		DUAL PRICES
ROW	SLACK OR SURPLUS	4.375086
2)	.000000	.000000
3)	111.602000	6.937440
$4)$.000000	.000000

RANGES IN WHICH THE BASIS IS UNCHANGED:

		OBJ COEFFICIENT	RANGES
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
X1	10.000000	3.500135	3.700000
X2	9.000000	5.285715	2.333400
		RIGHTHAND SIDE R	NGES
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	630.000000	52.364582	134.400000
3	600.000000	INFINITY	111.602000
4	708.000000	192.000010	128.002800
5	135.000000	INFINITY	18.000232

ROW (BASIS)	$\frac{\text { X1 }}{0}$	$\frac{X 2}{.00}$	$\frac{\text { SLK } 2}{4.375}$	$\frac{\text { SLK } 3}{.00}$		$\frac{\text { SLK } 4}{6.937}$		SLK 5
ART	.00	.00	7668.012					
2 X2	.00	1.00	1.875	.00	-1.312	.00	251.998	
3 SLK 3	.00	.00	-1.000	1.00	.200	.00	111.602	
4 X1	1.00	.00	-1.250	.00	1.875	.00	540.003	
5 SLK 5	.00	.00	-.344	.00	.141	1.00	18.000	

Enter the correct answer into each blank or check the correct alternative answer, as appropriate. If not sufficient information, write "NSI" in the blank:
a. If the profit on STANDARD bags were to decrease from $\$ 10$ each to $\$ 7$ each, the number of STANDARD bags to be produced would
|__| increase |__| decrease |_X_| remain the same |__| not sufficient info.
Note: $\$ 3$ is less than the ALLOWABLE DECREASE in the OBJ COEFFICIENT RANGES.
b. If the profit on DELUXE bags were to increase from $\$ 9$ each to $\$ 15$ each, the number of DELUXE bags to be produced would
|_X_| increase | __| decrease |__| remain the same |__| not sufficient info.
Note: $\$ 6$ exceeds the ALLOWABLE INCREASE in the OBJ COEFFICIENT RANGES, which means that the basis will change. It seems clear that the basis change would result in an increase in production.
c. The LP problem above has |-X | exactly one optimal solution
|__|exactly two optimal solutions | an infinite number of optimal solutions
Note: there is no nonbasic variable (SLK2 nor SLK4) with a zero reduced cost.
d. If an additional 10 hours were available in the inspect-\&-pack department, PAR would be able to obtain an additional \$_0__ in profits.
Note: The dual price is zero, and the 10 hour increase is less than the ALLOWABLE INCREASE in the RHS RANGES table.
e. If an additional 10 hours were available in the cut- $\&$-dye department, PAR would be able to obtain an additional $\$ 43.75$ in profits.
Note: The dual price is $\$ 4.375086 /$ hour, and the 10 hour increase is less than the ALLOWABLE INCREASE in the RHS RANGES table.
f. If the variable "SLK 2" were increased, this would be equivalent to _X decreasing the hours used in the cut- $\&$-dye department __ increasing the hours used in the cut-\&-dye department ___ none of the above
Note: SLK2 is the unused hours in the cut-\&-dye department-- more unused hours means fewer hours used.
g. If the variable "SLK 2" were increased by 10 , X 1 would $|\underline{X}|$ increase |__| decrease by _12.5_ STANDARD golf bags/quarter.
Note: the substitution rate (from the TABLEAU) is -1.25 .
h. If the variable "SLK 2" were increased by 10 , X2 would $\quad \ldots$ increase $\lfloor\underline{X} \mid$ decrease by _18.75 DELUXE golf bags/quarter.
Note: the substitution rate (from the TABLEAU) is 1.875 .
i. If a pivot were to be performed to enter the variable SL̄K2 into the basis, then according to the "minimum ratio test", the value of SLK2 in the resulting basic solution would be approximately

_- 252/1.875	- 111.6	__540/1.25	__18/0.344
__1.875/252	__1/111.6	__1.25/540	__0.344/18
	__ not sufficient information		

j. If the variable SLK2 were to enter the basis, then the variable _X2__ will leave the basis. Note: since there is only one positive substitution rate (in the row in which X2 is basic), that row must be the pivot row. The ratio of RHS/substitution rate is approximately $252 / 1.875=134.4$.

56:171 Operations Research
 Quiz \#5 Solutions-- Fall 2000

PART ONE: Data Envelopment Analysis (Note: $D M U=$ "decision-making-unit")
c 1. In the maximization problem of the primal-dual pair of LP models, the decision variables are:
a. The amount of each input and output to be used by the DMU
b. The multipliers for the DMUs which are used to form a linear combination of DMUs in the reference set.
c. The "prices" assigned to the inputs and outputs.
c. None of the above
_- ${ }^{-}$2. The "prices" or weights assigned to the input \& output variables in the maximization problem must
a. be nonnegative
b. sum to 1.0
c. Both a \& b
d. Neither a nor b.

True (+) or false (o)?
_ \pm _ 3. To perform a complete DEA analysis, an LP must be solved for every DMU.
_ $\underline{0}$ 4. In the maximization LP form of the problem, all constraints have non-zero right-hand-sides.
Note: One constraint states that the value of the denominator in the efficiency ratio equals 1.0.
_ \pm. 5 . There is a constraint for every DMU (in the maximization LP form of the problem).
_ _ 6. The optimal value of the LP cannot exceed 1.0.
_o 7. The number of input and output variables must be equal.

2303020202002032

Version A: Assignment Problem. Three machines are to be assigned to three jobs (one machine per job), so that total machine hours used is minimized. The hours required by each machine for the jobs is given in the table below.

	Job 1	Job 2	Job 3
Machine A	4	2	9
Machine B	2	1	5
Machine C	5	2	10

a. Perform the row reduction step of the Hungarian method so that every row contains at least one zero. (Write the updated matrix below.) Subtract 2 from each time in row 1, 1 from every time in row 2, and 2 from every time in row 3 above:

	Job 1	Job 2	Job 3
Machine A	2	0	7
Machine B	1	0	4
Machine C	3	0	8

b. Perform the column reduction step so that every column contains at least one zero, and write the updated matrix below:

Subtract 1 from every time in column 1 and 4 from every time in column 3 above:

	Job 1	Job 2	Job 3
Machine A	1	0	3
Machine B	0	0	0
Machine C	2	0	4

c. What is the smallest number of (horizontal \& vertical) lines required to cover all the zeroes? _2_(A line through row 2 and a line through column 2)
d. Are any further steps required? If so, perform the next step, and write the resulting matrix below: Subtract 1 from every time without a line through it and add 1 to the intersection of the two lines:

	Job 1	Job 2	Job 3
Machine A	0	0	2
Machine B	0	1	0
Machine C	1	0	3

e. What is now the smallest number of (horizontal \& vertical) lines required to cover all the zeroes? $\underline{3}$
 $\underline{2}_{-}$. Total machine hours required is $_\underline{11}$.
g. The assignment problem can be modeled as a transportation problem with ___ sources and __ $\underline{3}_{-}$destinations, with the supplies available at the sources equal to __1__ and the demands at the destinations equal to $\ldots_{\ldots} \underline{1}_{\ldots}$. The number of basic variables will be __ $\underline{Z}_{\ldots}(=m+n-1)$, while the number of positive variables in a basic solution will be __ $3 \ldots(<5)$. Every basic solution is therefore classified as "degenerate".

130301303010301030

Version B: Assignment Problem. Three machines are to be assigned to three jobs (one machine per job), so that total machine hours used is minimized. The hours required by each machine for the jobs is given in the table below.

	Job 1	Job 2	Job 3
Machine A	5	2	2
Machine B	9	4	5
Machine C	10	5	7

a. Perform the row reduction step of the Hungarian method so that every row contains at least one zero. (Write the updated matrix below.) Subtract 2 from every time in row 1, 4 from every time in row 2, and 5 from every time in row 3:

	Job 1	Job 2	Job 3
Machine A	3	0	0
Machine B	5	0	1
Machine C	5	0	2

b. Perform the column reduction step so that every column contains at least one zero, and write the updated matrix below. Subtract 3 from every time in column 1:

	Job 1	Job 2	Job 3
Machine A	0	0	0
Machine B	2	0	1
Machine C	2	0	2

c. What is the smallest number of (horizontal \& vertical) lines required to cover all the zeroes? $_\underline{2}$
d. Are any further steps required? If so, perform the next step, and write the resulting matrix below: Subtract 1 from every time without a line through it, and add 1 to the intersections of the two lines:

	Job 1	Job 2	Job 3
Machine A	0	1	0
Machine B	1	0	0
Machine C	1	0	1

e. What is now the smallest number of (horizontal \& vertical) lines required to cover all the zeroes? _-
f. Find the optimal assignment: Machine A performs job _ $\underline{1}_{-}$. Machine B performs job _ $\underline{3}_{-}$. Machine C performs job $__{2}$. Total machine hours required is $\underline{15}^{15}$.
g. Same as above.

56:171 Operations Research
 Quiz \#6 Solution -- Fall 2000

Consider the following payoff table in which you must choose among three possible alternatives, after which two different states of nature may occur. (Nothing is known about the probability distribution of the state of nature.)

State of Nature

Decision	1	2	Min	Max
1	4	2	$-\frac{2}{4}$	$-\frac{4}{6}$
2	6	4	$-\frac{4}{3}$	$-\frac{8}{8}$
3	3	8	-	-

1. What is the optimal decision if the maximin criterion is used? ___
2. What is the optimal decision if the maximax criterion is used? 3
3. Create the regret table:

	State of Nature			
Decision	1	2	Max	
1	$-\frac{2}{-}$	$-\underline{6}-$	$-\underline{6}-$	
2	$-\underline{3}-$	$-\underline{4}-$	$-\underline{4}-$	
3	$\underline{3}$	$\underline{3}$		

4. What is the optimal decision if the minimax regret is used? __-

General Custard Corporation is being sued by Sue Smith. Sue must decide whether to accept an offer of $\$ 50,000$ by the corporation to settle out of court, or she can go to court. If she goes to court, there is a 25% chance that she will win the case (event W) and a 75% chance she will lose (event L). If she wins, she will receive $\$ 180,000$, but if she loses, she will net $\$ 0$. A decision tree representing her situation appears below, where payoffs are in thousands of dollars:

5. What is the decision which maximizes the expected value? _ $\underline{X}_{\text {_ }}$ settle ___go to court

For $\$ 20,000$, Sue can hire a consultant who will predict the outcome of the trial, i.e., either he predicts a loss of the suit (event PL), or he predicts a win (event $P W$). The consultant is correct 80% of the time, e.g., if the suit will win, the probability that the consultant predicts the win is 80%.

Bayes' Rule states that if S_{i} is one of the n states of nature and O_{j} is the outcome of an experiment,

$$
P\left\{S_{i} \mid O_{j}\right\}=\frac{P\left\{O_{j} \mid S_{i}\right\} P\left\{S_{i}\right\}}{P\left\{O_{j}\right\}}, \text { where } P\left\{O_{j}\right\}=\sum_{k} P\left\{O_{j} \mid S_{k}\right\} P\left\{S_{k}\right\}
$$

6. The probability that the consultant will predict a win, i.e. $\mathrm{P}\{\mathrm{PW}\}$ is 35%

$$
\begin{aligned}
P\{P W\} & =P\{P W \mid W\} P\{W\}+P\{P W \mid L\} P\{L\} \\
& =0.8 \times 0.25+0.2 \times 0.75=0.35
\end{aligned}
$$

The probability that the consultant will predict a loss, i.e. $\mathrm{P}\{\mathrm{PL}\}$ is 65%

$$
\begin{aligned}
P\{P L\} & =P\{P L \mid L\} P\{L\}+P\{P W \mid W\} P\{W\} \\
& =0.8 \times 0.75+0.2 \times 0.25=0.65
\end{aligned}
$$

7. According to Bayes' theorem, the probability that Sue will win, given that the consultant predicts a win, is

$$
P\{W \mid P W\}=\frac{P\{P W \mid W\} P\{W\}}{P\{P W\}}=\frac{0.8 \times 0.25}{0.35}=0.5714
$$

The decision tree below includes Sue's decision as to whether or not to hire the consultant. Insert the probability that you computed in (7) above, together with its complement $P\{L \mid P W\}$.

Note that in this tree, the cost of the consultant is not included in the "payoffs" at the ends of the tree, but is included only when comparing the payoffs at nodes $2 \& 4$.
8. "Fold back" nodes 2 through 8, and write the value of each node below:

Node	Value	Node	Value	Node	Value
8	$\underline{13.86}$	5	102.85	2	50
7	50	4	$-\frac{68.5}{45}$	1	$--\underline{50}-$
6	102.85	3			

9. Should Sue hire the consultant? Circle: Yes NO
10. The expected value of the consultant's opinion is (in thousands of \$) $\$ 18,500$

56:171 Operations Research
 Quiz \#7 Solutions -- Version A -- Fall 2000

a. Complete the labeling of the nodes on the A-O-A project network (so that if arrow goes from node \mathbf{i} to node \mathbf{j}, then $\mathbf{i}<\mathbf{j})$. Note that $I, J, \& K$ are "dummy"activities.

b. The activity durations are given on the arrows. Finish computing the Early Times (ET) and Late Times (LT) for each node, writing them in the box (with rounded corners) beside each node.
c. Complete the table:

Activity	Duration	Early Start	Early Finish	Late Start	Late Finish	Total Slack
A	3	0	3	2	5	2
B	5	0	5	0	5	0
C	4	0	4	1	5	1
D	6	5	11	5	11	0
E	4	5	9	7	11	2
F	5	4	9	6	11	2
G	3	11	14	12	15	1
H	4	11	15	11	15	0

Note: Find Early Start from ET at beginning node, Early Finish = Early Start + duration, Late Finish $=$ LT at end node. Total Slack = difference between early finish \& late finish.
d. Which activities are critical? (circle: A B C D E F G H I J K) Note: those with slack=0!
e. Suppose that the durations are random, with the expected value as given, but with standard deviations all equal to 1.00 . What is the standard deviation of the project completion time? $\quad \sqrt{3}=1.7322$
Note: Variance of sum of three durations $=$ sum of variances! So variance $=3$ and std deviation $=\sqrt{ } 3$
f. Complete the A-O-N (activity-on-node) network for this same project. (Add any "dummy" activities whicharenecessary.) Note: A-O-N network does not require any "dummyactivities" (other than "begin" and "end").

a. Complete the labeling of the nodes on the A-OA project network above (so that if arrow goes fromnode \mathbf{i} to node \mathbf{j}, then $\mathbf{i}<\mathbf{j})$. Note that I, J, \& Kare "dummy" activities.

b. The activity durations are given below on the arrows. Finish computing the Early Times (ET) and Late Times (LT) for each node, writing them in the box (with rounded corners) beside each node.
c. Complete the table:

Activity	Duration	Early Start	Early Finish	Late Start	Late Finish	Total Slack
A	3	0	3	2	5	2
B	5	0	5	0	5	0
C	4	0	4	1	5	1
D	3	3	6	7	10	4
E	4	3	7	6	10	3
F	5	5	10	5	10	0
G	3	6	9	11	14	5
H	4	10	14	10	14	0

Note: Find Early Start from ET at beginning node, Early Finish = Early Start + duration, Late Finish $=$ LT at end node. Total Slack = difference between early finish \& late finish.
d. Which activities are critical? (circle: A B C D E B G I J K) Note: those with slack=0!
e. Suppose that the durations are random, with the expected value as given, but with standard deviations all equal to 1.00. What is the standard deviation of the project completion time? $\quad \sqrt{3}=1.7322$

Note: Variance of sum of three durations $=$ sum of variances! So variance $=3$ and std deviation $=\sqrt{ } 3$
f. Complete the A-O-N (activity-on-node) network for this same project. (Add any "dummy" activities whicharenecessary.)
Note: A-O-N network does not require any "dummyactivities"(other than "begin" and "end").

56:171 Operations Research Quiz \#8 Solutions -- Fall 2000

1. The Cubs are trying to determine which of the following free agent pitchers should be signed: RickSutcliffe (RS), Bruce Sutter (BS), Dennis Eckersley (DE), Steve Trout (ST), Tim Stoddard (TS).

Define five binary variables, one for each pitcher: for example: RS = 1 if RickSutcliffe is signed, 0 otherwise Find the appropriate constraint corresponding to each restriction. If none apply, write " z "

If DE and ST are signed, then BS cannot be signed: The Cubs cannot sign both ST and TS: If TS is signed, then DE must also be signed: If DE is signed, then TS cannot be signed: If ST is not signed, then DE must be signed: The Cubs must sign either BS or RS (or both):

```
\(\mathrm{DE}+\mathrm{ST}+\mathrm{BS} \leq 2\)
\(\mathrm{ST}+\mathrm{TS} \leq 1\)
\(\mathrm{TS} \leq \mathrm{DE}\)
(z) None of the above (would need \(\mathrm{DE}+\mathrm{TS} \leq 1\) )
\(\mathrm{TS}+\mathrm{DE} \geq 1\)
\(\mathrm{RS}+\mathrm{BS} \geq 1\)
```

a. $\mathrm{ST}+\mathrm{TS}=1$
b. $\mathrm{ST}+\mathrm{TS} \leq 1$
c. $\mathrm{ST} \leq \mathrm{TS}$
d. $\mathrm{TS} \leq \mathrm{ST}$
e. $\mathrm{DE}+\mathrm{ST} \geq 1$
f. $\mathrm{DE}+\mathrm{ST}=1$
g. $\mathrm{DE}+\mathrm{ST} \leq 1$
h. $\mathrm{DE} \leq \mathrm{ST}$
i. $\mathrm{TS} \leq \mathrm{DE}$
j. $\mathrm{TS}+\mathrm{DE}=1$
k. $\mathrm{TS}+\mathrm{DE} \geq 1$

1. $\mathrm{ST} \leq \mathrm{DE}$
m. $\mathrm{DE}+\mathrm{ST}+\mathrm{BS} \leq 2$
n. $\mathrm{DE}+\mathrm{ST}+\mathrm{BS}=2$
o. $\mathrm{DE}+\mathrm{ST}+\mathrm{BS} \geq 2$
p. $\mathrm{BS} \leq \mathrm{DE}+\mathrm{ST}$
q. $\mathrm{DE}+\mathrm{ST}-1 \geq \mathrm{BS}$
r. $\mathrm{ST}+\mathrm{DE} \geq 1$
s. $\mathrm{TS} \geq \mathrm{DE}$
t. $\mathrm{TS} \leq \mathrm{DE}$
u. $\mathrm{DE}+\mathrm{ST}-1 \leq \mathrm{BS}$
v. $\mathrm{RS}+\mathrm{BS} \geq 1$
w. $\mathrm{RS}+\mathrm{BS} \leq 1$
x. $\mathrm{RS}+\mathrm{BS}=1$

z. None of the above

2. Four trucks are available to deliver milk to five grocery stores. Capacities and daily operating costs vary among the trucks. Trucks are to make a single trip per day. Each grocery may be supplied by only one truck, but a truck may deliver to more than one grocery in one trip. No more than $\$ 100$ may be spent on the trucks.

Truck $\#$	Capacity (gallons)	Daily operating cost (\$)
1	400	45
2	500	50
3	600	55
4	1100	60

Grocery $\#$	Daily Demand (gallons)
1	100
2	200
3	300
4	500
5	800

Define binary variables

$$
\begin{aligned}
& Y_{i}=1 \text { if truck } \mathrm{i} \text { is used, } 0 \text { otherwise } \\
& \mathrm{X}_{\mathrm{ij}}=1 \text { if truck i delivers to grocery } \mathrm{j}, 0 \text { otherwise }
\end{aligned}
$$

Check each of the constraints below which would be valid in the integer LP model.

$-\mathrm{X}_{13}+\mathrm{X}_{23}+\mathrm{X}_{33}+\mathrm{X}_{4}$	$\downarrow \mathrm{X}_{43} \leq Y_{4}$
$\ldots X_{41}+X_{42}+X_{43}+X_{44}+X_{45}=1$	$-\mathrm{Y}_{4} \leq \mathrm{X}_{43}$
$\mathrm{X}_{31}+\mathrm{X}_{32}+\mathrm{X}_{33}+\mathrm{X}_{34}+\mathrm{X}_{35} \leq 600 \mathrm{Y}_{3}$	$\mathrm{X}_{13}+\mathrm{X}_{23}+\mathrm{X}_{33}+\mathrm{X}_{43} \leq 300 \mathrm{Y}_{3}$
$\checkmark 100 \mathrm{X}_{31}+200 \mathrm{X}_{32}+300 \mathrm{X}_{33}+500 \mathrm{X}_{34}+800 \mathrm{X}_{35} \leq 600 \mathrm{Y}_{3}$	$-X_{13}+X_{23}+X_{33}+X_{43} \leq 4 Y_{3}$
$\mathrm{X}_{41}+\mathrm{X}_{42}+\mathrm{X}_{43}+\mathrm{X}_{44}+\mathrm{X}_{45} \leq \mathrm{Y}_{4}$	$\checkmark \mathrm{X}_{41}+\mathrm{X}_{42}+\mathrm{X}_{43}+\mathrm{X}_{44}+\mathrm{X}_{45} \leq 5 \mathrm{Y}_{4}$
$400 \mathrm{X}_{14}+500 \mathrm{X}_{24}+600 \mathrm{X}_{34}+1100 \mathrm{X}_{44} \leq 500 \mathrm{Y}_{4}$	* $\mathrm{X}_{41}+\mathrm{X}_{42}+\mathrm{X}_{43}+\mathrm{X}_{44}+\mathrm{X}_{45} \leq 1100$
* $300 \mathrm{X}_{43} \leq 1100 \mathrm{Y}_{4}$	$300 \mathrm{X}_{43} \geq 1100 \mathrm{Y}_{4}$
$\checkmark \downarrow 45 \mathrm{Y}_{1}+50 \mathrm{Y}_{2}+55 \mathrm{Y}_{3}+60 \mathrm{Y}_{4} \leq 100$	_- $45 \mathrm{Y}_{1}+50 \mathrm{Y}_{2}+55 \mathrm{Y}_{3}+60 \mathrm{Y}_{4}=100$

Note: Constraints indicated by $" \underline{\downarrow}$ " should be included in the integer LP model. Those indicated by $" *$ " are valid inequalities, but are redundant and not needed.

Consider an (\mathbf{s}, \mathbf{S}) inventory system in which the number of items on the shelf is checked at the end of each day. The demand distribution is as follows:

$\mathrm{n}=$	0	1	2
$\mathrm{P}\{\mathrm{D}=\mathrm{n}\}$	0.2	0.5	0.3

To avoid shortages, the current policy is to restock the shelf at the end of each day (after spare parts have been removed) so that the shelf is again filled to its limit (i.e., 4) if there are fewer than 2 parts on the shelf. (That is, it is an (s, S) inventory system, with $s=2$ and $S=4$.)

The inventory system has been modeled as a Markov chain, with the state of the system defined as the end-of-day inventory level (before restocking). Refer to the computer output which follows to answer the following questions:

P =

	0	1	2	3	4
0	0	0	0.3	0.5	0.2
1	0	0	0.3	0.5	0.2
2	0.3	0.5	0.2	0	0
3	0	0.3	0.5	0.2	0
4	0	0	0.3	0.5	0.2

$P^{2}=$

	0	1	2	3	4
0	0.09	0.3	0.37	0.2	0.04
1	0.09	0.3	0.37	0.2	0.04
2	0.06	0.1	0.28	0.4	0.16
3	0.15	0.31	0.29	0.19	0.06
4	0.09	0.3	0.37	0.2	0.04

$P^{3}=$

	0	1	2	3	4
0	0.111	0.245	0.303	0.255	0.086
1	0.111	0.245	0.303	0.255	0.086
2	0.084	0.26	0.352	0.24	0.064
3	0.087	0.202	0.309	0.298	0.104
4	0.111	0.245	0.303	0.255	0.086

$P^{4}=$

0	1	2	3	4	
0	0.0909	0.228	0.3207	0.272	0.0884
1	0.0909	0.228	0.3207	0.272	0.0884
2	0.1056	0.248	0.3128	0.252	0.0816
3	0.0927	0.2439	0.3287	0.2561	0.0786
4	0.0909	0.228	0.3207	0.272	0.0884

$P^{5}=$

	0	1	2	3	4
0	0.0962	0.2419	0.3223	0.2580	0.0814
1	0.0962	0.2419	0.3223	0.2580	0.0814
2	0.0938	0.2320	0.3191	0.2680	0.0870
3	0.0986	0.2412	0.3183	0.2588	0.0830
4	0.0962	0.2419	0.3223	0.2580	0.0814

___ c. $_{\text {_ }}$ 1. the value $\mathrm{P}_{4,2}$ is
a. $P\{$ demand $=0\}$
b. $P\{$ demand $=1\}$
c. $P\{$ demand $=2\}$
d. $\mathrm{P}\{$ demand $\leq 1\}$
e. $P\{$ demand $\geq 1\}$
f. none of the above
\qquad 2. the value $P_{0,3}$ is
a. $P\{$ demand $=0\}$
b. $P\{$ demand $=1\}$
c. $P\{$ demand $=2\}$
d. $\mathrm{P}\{$ demand $\leq 1\}$
e. $P\{$ demand $\geq 1\}$
f. none of the above
3. the value $P_{2,0}$ is
a. $P\{$ demand $=0\}$
b. $P\{$ demand $=1\}$
c. $P\{$ demand $=2\}$
d. $P\{$ demand $\leq 1\}$
e. $P\{$ demand $\geq 1\}$
f. none of the above
d 4. If the shelf is full Monday morning, the expected number of days until a stockout occurs is (select nearest value):
a. 2.5
b. 5
c. 7.5
d. $10\left(\mathrm{~m}_{40}=10.4\right)$ e. 12.5
f. 15
g. 17.5
h. 20
i. more than 20
e 5. If the shelf is full Monday morning, the probability that the shelf is full Thursday night (i.e., after 4 days of sales) is (select nearest value):
a. 5%
b. 6%
c. 7%
d. 8%
e. $9 \%\left(p_{44}^{(4)}=0.0884\right)$
f. 10%
g. 11%
h. 12%
i. 13%
j. $\geq 14 \%$
f_ 6. If the shelf is full Monday morning, the probability that the shelf is restocked Thursday night is (select nearest value):
a. 5%
b. 10%
c. 15%
d. 20%
e. 25%
f. $30 \%\left(p_{4,0}^{(4)}+p_{4,1}^{(4)}=0.0909+0.228=0.3189\right)$
g. 35%
h. 40%
i. 45% j. $\geq 50 \%$
___ 7. If the shelf is full Monday morning, the expected number of nights that the shelf is restocked during the next five nights is (select nearest value):
a. 0.25
b. 0.5
c. 0.75
d. 1
e. 1.25
f. $1.5\left(\sum_{n=1}^{5}\left(p_{40}^{(n)}+p_{41}^{(n)}\right)=0.388+1.015=1.403\right) \quad$ g. $1.75 \quad$ h. $2 \quad$ i. $2.25 \quad$ j. ≥ 2.5
___ \quad. How frequently will the shelf be restocked? (select nearest value): once every \qquad days
a. 0.5 days b. 1 days
c. 1.5 days
d. 2 days
e. 2.5 days f. 3 days
g. 3.5 days
h. 4 days
i. 4.5 days $\mathrm{j} . \geq 5$ days

Note: $\frac{1}{\pi_{0}+\pi_{1}}=\frac{1}{0.09607+0.23856}=\frac{1}{0.33463}=2.988$
- d ${-} \quad$. If the shelf is full Monday morning, what is the probability that the next stockout is Thursday night? (select nearest value):
a. 5%
b. 6%
c. 7%
d. $8 \%\left(f_{4,0}^{4}=0.0828\right)$ e. 9%
f. 10%
g. 11%
h. 12%
i. 13%
j. $\geq 14 \%$
10. Circle (one or more) of the following equations which are among those solved to compute the steady state probability distribution:
a. $\pi_{0}=0.3 \pi_{2}$
b. $\pi_{3}=0.3 \pi_{0}+0.5 \pi_{1}+0.2 \pi_{2}$
c. $\pi_{2}=0.3 \pi_{0}+0.3 \pi \pi_{1}+0.2 \pi_{2}+0.5 \pi_{3}+0.3 \pi \pi_{4}$
d. $\pi_{4}=0.3 \pi_{2}+0.5 \pi_{3}+0.2 \pi_{4}$
e. $\pi_{4}=0.2 \pi_{2}+0.5 \pi_{3}+0.3 \pi_{4}$
f. $\pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}=1$

56:171 Operations Research
 Quiz \#10 - Fall 2000

Part I. Coldspot manufactures refrigerators. The company has issued a warranty on all refrigerators that requires free replacement of any refrigerator that fails before it is three years old.

- 3% of all new refrigerators fail during their first year of operation.
- 5% of all 1 -year-old refrigerators fail during their second year of operation.
- 7% of all 2-year-old refrigerators fail during their third year of operation.

Replacement refrigerators are not covered by the warranty.
Define a discrete-time Markov chain, with states
(0.) new refrigerators
(1.) 1-year-old refrigerators
(2.) 2-year-old refrigerators
(3.) refrigerators that have passed their third anniversary
(4.) replacement refrigerators

Define the stages to be years, with the refrigerator observed on the anniversaries of its purchase.

$\mathrm{P}=$

$\mathrm{Q}=$			
\backslash	0	1	2
0	0	0.97	0
1	0	0	0.95
2	0	0	0

$\mathrm{R}=$		
\backslash	3	4
0	0	0.03
1	0	0.05
$2 \mid$	0.93	0.07
$\mathrm{E}=$		
\backslash	$0 \quad 1$	2
0	10.97	0.9215
1	01	0.95
$2 \mid$	00	1

$\mathrm{A}=$		
\backslash	3	4
0	0.857	0.14301
1	0.8835	0.1165
2	0.93	0.07

c 1. Which states are transient, and which are absorbing?
a. All are transient \& none are absorbing
c. States $\{0,1,2\}$ are transient $\&\{3,4\}$ are absorbing
b. All are absorbing \& none are transient
d. States $\{0,1,2\}$ are absorbing $\&\{3,4\}$ are transient
e. None of the above
e 2. What fraction of the refrigerators will Coldspot expect to replace? (Choose nearest value!)
a. 6%
b. 8%
c. 10%
d. 12%
e. 14%
f. 16%
g. 18%
h. 20%
a 3. What fraction of one-year-old refrigerators are expected to survive past the warranty period? (Choose nearest value!)
a. 88%
b. 89%
c. 90%
d. 91%
e. 92%
f. 93%
g. 94%
h. 95%

Part II. A parking lot consists of four spaces. Cars making use of these spaces arrive according to a Poisson process at the rate of eight cars per hour. Parking time is exponentially distributed with mean of 30 minutes. Cars who cannot find an empty space immediately on arrival may temporarily wait inside the lot until a parked car leaves, but may get impatient and leave before a parking space opens up. Assume that the time that a driver is willing to wait has exponential distribution with an average of 15 minutes. The temporary space can hold only two cars. All other cars that cannot park or find a temporary waiting space must go elsewhere. Model this system as a birth-death process, with states $0,1, \ldots 6$.
\qquad
_c 1. Which is are the correct transition rates?
(a)

(c)

(d)

The steadystate probability distribution of the number of cars in the system is:

n	0	1	2	3	4	5	6
π_{n}	0.02	0.08	0.18	0.24	0.24	0.16	0.08

e 2. What is the fraction of the time that there is at least one empty space? (Choose nearest value!)
a. 10%
b. 20%
c. 30%
d. 40%
e. 50%
f. 60%
g. 70%
h. 80%

Solution: $\pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}=52 \%$
f 3. What is the average number of cars in the lot? (Choose nearest value!)
a. 1
b. 1.5
c. 2
d. 2.5
e. 3
f. 3.5
g. 4
h. 4.5

Solution: $0 \pi_{0}+1 \pi_{1}+2 \pi_{2}+3 \pi_{3}+4 \pi_{4}+5 \pi_{5}+6 \pi_{6}=3.4$
_c 4. What is the average number of cars waiting? (Choose nearest value!)
a. 0.1
b. 0.2
c. 0.3
d. 0.4
e. 0.5
f. 0.6
g. 0.7
h. 0.8

Solution: $0 \pi_{0}+0 \pi_{1}+0 \pi_{2}+0 \pi_{3}+0 \pi_{4}+1 \pi_{5}+2 \pi_{6}=0.32$
_c 5. What is the average arrival rate (keeping in mind that the arrival rate is zero when $\mathrm{n}=6$)? (Choose nearest value!)
a. $5 / \mathrm{hr}$
b. $6 / \mathrm{hr}$
c. $7 / \mathrm{hr}$
d. $8 / \mathrm{hr}$
e. $9 / \mathrm{hr}$
f. $10 / \mathrm{hr}$
g. $11 / \mathrm{hr}$
h. $12 / \mathrm{hr}$

Solution: $8 \pi_{0}+8 \pi_{1}+8 \pi_{2}+8 \pi_{3}+8 \pi_{4}+8 \pi_{5}+0 \pi_{6}=8 \times\left(1-\pi_{6}\right)=7.36 / \mathrm{hr}$
_b 6. According to Little's Law, what is the average time that a car waits for a parking space? (Choose nearest value!)
a. 0.025 hr
b. 0.05 hr
c. 0.075 hr
d. 0.1 hr
e. 0.25 hr
f. 0.5 hr
g. 0.75 hr
h. 1 hr .

Solution: $L_{q}=\underline{\lambda} W_{q} \Rightarrow W_{q}=L_{q} / \underline{\lambda}=0.32 / 7.36 / \mathrm{hr}=0.0434 \mathrm{hr}$
Consider the birth-death process:

_d 7. The probability of state 0 in steady-state is found by
a. $\frac{1}{\pi_{0}}=1+\frac{2}{4}+\frac{4}{4}+\frac{6}{4}=4$
b. $\frac{1}{\pi_{0}}=1+\frac{4}{2}+\frac{4}{4}+\frac{4}{6}=\frac{14}{3}$
c. $\frac{1}{\pi_{0}}=\frac{4}{2} \times \frac{4}{4} \times \frac{4}{6}=\frac{4}{3}$
d. $\frac{1}{\pi_{0}}=1+\frac{4}{2}+\frac{4}{2} \times \frac{4}{4}+\frac{4}{2} \times \frac{4}{4} \times \frac{4}{6}=6$
e. None of the above

56:171 Operations Research
 Quiz \#11 Solutions - Fall 2000

Consider the single-server queue with the birth-death model shown below:

_- \quad 1. The probability distribution of the time between arrivals is
a. Markov
b. Exponential
c. Poisson
d. Normal
e. Binomial
f. Bernouilli
b 2. The steadystate probability that the queue is empty is π{0}, where
a. $\frac{1}{\pi_{0}}=1+\frac{4}{2}+\frac{2}{2}+\frac{1}{2}=\frac{11}{2}$
b. $\frac{1}{\pi_{0}}=1+\frac{4}{2}+\frac{4}{2} \frac{2}{2}+\frac{4}{2} \frac{2}{2} \frac{1}{2}=6$
c. $\frac{1}{\pi_{0}}=\frac{4}{2}+\frac{4}{2} \frac{2}{2}+\frac{4}{2} \frac{2}{2} \frac{1}{2}=5$
d. $\frac{1}{\pi_{0}}=\frac{4}{2}+\frac{2}{2}+\frac{1}{2}=\frac{9}{2}$
e. $\frac{1}{\pi_{0}}=\frac{4 \times 2 \times 1}{2 \times 2 \times 2}=1$
f. None of the above
d 3. The steadystate probability π{1} that the server is busy with no customers waiting is equal to
a. π_{0}
b. $\frac{1}{2} \pi_{0}$
c. $\frac{1}{4} \pi_{0}$
d. $2 \pi_{0}$
e. $4 \pi_{0}$
f. None of the above
e 4. The average number of customers in the system (including the one being served) is denoted by
a. λ
b. μ
c. M
d. N
e. L
f. None of the above
b 5. If the average number of customers in the system is 1.5 , and the average arrival rate is $5 / 3$ per hour, then the average time spent by a customer in the system is (choose nearest value)
a. 0.5 hr
b. $1 \mathrm{hr} \approx L / \frac{1}{\lambda}=\frac{1.5}{5 / 3 h r}=0.9 \mathrm{hr}$
c. 1.5 hr
d. 2 hr
e. 2.5 hr
f. None of the above

Deterministic Dynamic Programming Model: Power Plant Capacity Planning:

This DP model schedules the construction of powerplants over a six-year period, given
$R[t]=$ cumulative number of plants required at the end of year $t(t=1,2, \ldots 6)$
$\mathrm{C}[\mathrm{t}]=$ cost per plant (in \$millions) during year t , where

Year t	C_{t}	R_{t}
1	4	1
2	4	2
3	5	4
4	5	5
5	6	6
6	6	8

A total of eight plants are to be constructed during the six-year period, with a restriction that no more than three may be built during each one-year period. Any year in which a plant is built, a cost of $\$ 2$ million is incurred (independent of number of plants built). Future costs will not be discounted, i.e., the time value of money is being ignored. As in the homework assignment, the stages are numbered in increasing order, i.e., $t=1$ is the first year and $t=6$ is the final year.

Consult the computer output to answer the questions below.

1. The minimum total construction cost is $\$ _40$ million
2. Several values are missing in the tables-- compute them:
A. 15
B. -17
C. $\underbrace{8}_{-}$
3. The optimal number of plants to be built in the first year is __ $\underline{3}_{-}$
4. The optimal number of plants to be built in the third year is ___

\qquad

56:171 Operations Research
Quiz \#12 Solution (Version A)- Fall 2000

Stochastic Production Planning with Backordering

We wish to plan next week's production (Monday through Saturday) of an expensive, low-demand item.

- the cost of production is $\$ \mathbf{6}$ for setup, plus $\$ \mathbf{4}$ per unit produced, up to a maximum of 4 units.
- the storage cost for inventory is $\$ 1$ per unit, based upon the level at the beginning of the day.
- a maximum of 5 units may be kept in inventory at the end of each day; any excess inventory is simply discarded.
- the demand D is random, with the same probability distribution each day:

demand d	0	1	2	3
$\mathrm{P}\{\mathrm{D}=\mathrm{d}\}$	0.2	0.3	0.3	0.2

- there is a penalty of $\$ 10$ per unit for any demand which cannot be satisfied. Any customer whose demand cannot be met takes his business elsewhere.
- the initial inventory is $\mathbf{1}$.
- a salvage value of $\mathbf{\$ 3}$ per unit is received for any inventory remaining at the end of the last day (Saturday). Consult the computer output which follows to answer the following questions: Note that in the computer output, stage 6= Monday, stage 5= Tuesday, etc. (i.e., $\mathrm{n}=$ \# days remaining in planning period.) We define
$\mathrm{S}_{\mathrm{n}}=$ stock on hand at stage n .
$\mathrm{f}_{\mathrm{n}}\left(\mathrm{S}_{\mathrm{n}}\right)=$ minimum total expected cost for the last n days if at the beginning of stage n the stock on hand is S_{n}. Thus, we seek the value of $f_{6}(1)$, i.e., the minimum expected cost for six days, beginning with one unit in inventory.
(a.) What is the value of $\mathrm{f}_{6}(1) ? \$ 61.77$
(b.) What is the total expected cost for the six days, if there is one unit of stock on hand initially? $\$ 61.77$
(c.) What should be the production quantity for Monday? __ $\underline{4}_{-}$
(d.) If, on Monday, the demand happens to be 2 units, how many should be produced on Tuesday? ___
(e.) Three values have been blanked out in the computer output, What are they?
- the cost associated with the decision to produce 1 unit on Friday when the inventory is 1 at the end of Thursday. (A)_33.09_(Note: this may or may not be the optimal decision!)
- the optimal value $f_{5}(1)$, i.e., the minimum total cost of the last 5 days (Tuesday through Saturday) if there is one unit of stock on hand Tuesday morning. (B) \$_51.21___
- the corresponding optimal decision $\mathrm{X}_{5}{ }^{*}(1)(\mathbf{C})$ \qquad

$\begin{gathered} -- \text { Stage } 1 \text {--- } \\ s \text { \ x:0 } \end{gathered}$		(Saturday)		3	
		1	2		
0	15.00	16.40	13.90	13.50	14.50
1	7.40	10.90	10.50	11.50	12.50
2	1.90	7.50	8.50	9.50	11.10
3	-1.50	5.50	6.50	8.10	10.60
4	-3.50	3.50	5.10	7.60	11.00
5	-5.50	2.10	4.60	8.00	12.00
---Stage 2--- (Friday)					
s	x:0	1	2	,	4
0	28.50	29.28	25.35	23.19	22.
1	20.28	22.35	20.19	19.90	20.78
2	13.35	17.19	16.90	17.78	19.90
3	8.19	13.90	14.78	16.90	19.90
4	4.90	11.78	13.90	16.90	20.50
5	2.78	10.90	13.90	17.50	21.

Stage 6 (Monday)

	Optimal	Optimal
State	Values	Decision
0 Empty	65.22	4 Prod
1 Stock1	61.77	4 Prod
2 Stock2	55.72	0 Idle
3 Stock3	50.91	0 Idle
4 Stock 4	47.22	0 Idle
5 Stock5	43.77	0 Idle

Stage 5 (Tuesday)

State	Optimal Values	Optimal Decision
0 Empty	54.66	4 Prod
1 Stock1	B) 51.21	C) 4 Prod 4
Stock2	45.15	0 Idle
3 Stock3	40.34	0 Idle
4 Stock 4	36.66	0 Idle
5 Stock5	33.21	0 Idle
Stage 4 (Wednesday)		
	Optimal	Optimal
State	Values	Decision
0 Empty	44.10	4 Prod
1 Stock1	40.63	4 Prod
2 Stock2	34.57	0 Idle
3 Stock3	29.80	0 Idle
4 Stock 4	26.10	0 Idle
5 Stock5	22.63	0 Idle

Stage 2 (Friday) Optimal Optimal

State	Values	Decision
0 Empty	22.90	4 Prod
1 Stock1	19.90	3 Prod
2 Stock2	13.35	0 Idle
3 Stock3	8.19	0 Idle
4 Stock 4	4.90	0 Idle
5 Stock5	2.78	0 Idle

Stage 1 (Saturday)

	Optimal	Optimal
State	Values	Decision
0 Empty	13.50	3 Prod 3
1 Stock1	7.40	0 Idle
2 Stock2	1.90	0 Idle
3 Stock3	-1.50	0 Idle
4 Stock 4	-3.50	0 Idle
5 Stock5	5.50	0 Idle

> | 56:171 Operations Research |
| :---: |
| Quiz \#12 Solution (Version B) - Fall 2000 |

Stochastic Production Planning with Backordering

We wish to plan next week's production (Monday through Saturday) of an expensive, low-demand item.

- the cost of production is $\$ 7$ for setup, plus $\$ 3$ per unit produced, up to a maximum of 4 units.
- the storage cost for inventory is $\$ 1$ per unit, based upon the level at the beginning of the day.
- a maximum of 5 units may be kept in inventory at the end of each day; any excess inventory is simply discarded.
- the demand D is random, with the same probability distribution each day:

demand d	0	1	2	3
$\mathrm{P}\{\mathrm{D}=\mathrm{d}\}$	0.2	0.3	0.3	0.2

- there is a penalty of $\$ \mathbf{1 0}$ per unit for any demand which cannot be satisfied. Any customer whose demand cannot be met takes his business elsewhere.
- the initial inventory is $\mathbf{1}$.
- a salvage value of $\$ \mathbf{3}$ per unit is received for any inventory remaining at the end of the last day (Saturday). Consult the computer output which follows to answer the following questions: Note that in the computer output, stage 6= Monday, stage 5= Tuesday, etc. (i.e., $\mathrm{n}=$ \# days remaining in planning period.) We define
$\mathrm{S}_{\mathrm{n}}=$ stock on hand at stage n .
$\mathrm{f}_{\mathrm{n}}\left(\mathrm{S}_{\mathrm{n}}\right)=$ minimum total expected cost for the last n days if at the beginning of stage n the stock on hand is S_{n}. Thus, we seek the value of $f_{6}(1)$, i.e., the minimum expected cost for six days, beginning with one unit in inventory.
(a.) What is the value of $\mathrm{f}_{6}(1)$? $\$ 55.31$
(b.) What is the total expected cost for the six days, if there is one unit of stock on hand initially? $\$ \underline{55.31}$
(c.) What should be the production quantity for Monday? __-
(d.) If, on Monday, the demand happens to be 2 units, how many should be produced on Tuesday? ___
(e.) Three values have been blanked out in the computer output, What are they?
- the cost associated with the decision to produce 1 unit on Thursday when the inventory is 1 at the end of Wednesday. (A) \$ 30.75__ (Note: this may or may not be the optimal decision!)
- the optimal value $f_{5}(1)$, i.e., the minimum total cost of the last 5 days (Tuesday through Saturday) if
there is one unit of stock on hand Tuesday morning. (B) \$_45.84_
- the corresponding optimal decision $\mathrm{X}_{5}{ }^{*}(1)(\mathbf{C}) __{\mathbf{4}}^{\mathbf{4}}$

$\begin{gathered} -- \text { Stage } 1--- \\ \mathrm{s} \backslash \mathrm{x}: 0^{-1} \end{gathered}$		(Saturday)		3	4
		1	2		
0	15.00	16.40	12.90	11.50	11.50
1	7.40	10.90	9.50	9.50	9.50
2	1.90	7.50	7.50	7.50	8.10
3	-1.50	5.50	5.50	6.10	7.60
4	-3.50	3.50	4.10	5.60	8.00
5	-5.50	2.10	3.60	6.00	9.00
---Stage 2--- (Friday)					
s	x:0	1	2	,	4
0	26.50	27.68	23.35	20.79	19.90
1	18.68	21.35	18.79	17.90	17.78
2	12.35	16.79	15.90	15.78	16.90
3	7.79	13.90	13.78	14.90	16.90
4	4.90	11.78	12.90	14.90	17.50
5	2.78	10.90	12.90	15.50	18.50

---Stage 3--- (Thursday)

s	$x: 0$	1	2	3	4
0	34.90	36.48	32.75	30.58	29.58
1	27.48	$A) 30.75$	28.58	27.58	26.83
2	21.75	26.58	25.58	24.83	25.42
3	17.58	23.58	22.83	23.42	25.20
4	14.58	20.83	21.42	23.20	25.78
5	11.83	19.42	21.20	23.78	26.78

Stage 4---		(Wednesday)			
S	$\mathrm{x}: 0$	1	2	3	4
0	44.58	46.03	42.19	40.01	39.08
1	37.03	40.19	38.01	37.08	36.36
2	31.19	36.01	35.08	34.36	34.81
3	27.01	33.08	32.36	32.81	34.38
4	24.08	30.36	30.81	32.38	34.83
5	21.36	28.81	30.38	32.83	35.83

---Stage 5--- (Tuesday)

s	$x: 0$	1	2	3	4
0	54.08	55.54	51.69	49.48	48.55
1	46.54	49.69	47.48	46.55	45.84
2	40.69	45.48	44.55	43.84	44.31
3	36.48	42.55	41.84	42.31	43.91
4	33.55	39.84	40.31	41.91	44.36
5	30.84	38.31	39.91	42.36	45.36

---Stage 6--- (Monday)

s	$\mathrm{x}: 0$	1	2	3	4
0	63.55	65.01	61.16	58.96	58.03

$\bigcirc \bigcirc \bigcirc$
Stage 6 (Monday)
Stage 3 (Thursday)

State	Optimal	Optimal
	Values	Decision
0 Empty	58.03	4 Prod
1 Stock1	55.31	4 Prod
2 Stock2	50.16	0 Idle
3 Stock3	45.96	0 Idle
4 Stock 4	43.03	0 Idle
5 Stock5	40.31	0 Idle

Stage 5 (Tuesday)

| State | | $\begin{array}{c}\text { Optimal } \\ \text { Values }\end{array}$ |
| :--- | ---: | ---: | \(\left.\begin{array}{c}Optimal

Decision\end{array}\right]\)

Stage 4 (Wednesday)

	Optimal	Optimal
State	Values	Decision
0 Empty	39.08	4 Prod 4
1 Stock1	36.36	4 Prod 4
2 Stock2	31.19	0 Idle
3 Stock3	27.01	0 Idle
4 Stock 4	24.08	0 Idle
5 Stock5	21.36	0 Idle

State	Optimal	Optimal
State		
0 Empty	29.58	4 Prod 4
1 Stock1	26.83	4 Prod 4
2 Stock2	21.75	0 Idle
3 Stock 3	17.58	0 Idle
4 Stock 4	14.58	0 Idle
5 Stock5	11.83	0 Idle

Stage 2 (Friday)

	Optimal	Optimal
State	Values	Decision
0 Empty	19.90	4 Prod
1 Stock1	17.78	4 Prod 4
2 Stock2	12.35	0 Idle
3 Stock 3	7.79	0 Idle
4 Stock 4	4.90	0 Idle
5 Stock5	2.78	0 Idle
Stage 1 (Saturday)		
	Optimal	Optimal
State	Values	Decision
0 Empty	11.50	3 Prod 3
1 Stock1	7.40	0 Idle
2 Stock2	1.90	0 Idle
3 Stock3	-1.50	0 Idle
4 Stock 4	-3.50	0 Idle
5 Stock5	-5.50	0 Idle

[^0]: © D.L.Bricker
 Dept of Mechanical \& Industrial Engineering
 University of Iowa

