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Abstract

Stop-loss reinsurance is one type of reinsurance contract that has attracted recent

attention. In the simplest form of this contract, a reinsurer agrees to pay all losses of the

insurer in excess of an agreed limit. This paper concerns the computation of bounds on

the stop{loss premium when the loss distribution is unknown, but information about

past claim experience is available in the form of frequencies of claims in each of a

set of intervals. We use a dual approach to calculate the bounds on the premium by

placing limits on the chi{square statistic or modi�ed chi-square statistic as measures

of the proximity of the loss distribution to the empirical distribution. This approach

requires optimization with respect to a single dual variable if the chi-square statistic is
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restricted. On the other hand, when the modi�ed chi-square statistic is restricted, the

bounds can be given in closed form.

Key Words: Lagrangian dual, chi{square goodness{of{�t, Pearson's goodness{of{�t,

chi{square statistic, modi�ed chi{square statistic, stop{loss premium.
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1 Introduction

An insurance company seeks to reduce the probability of su�ering catastrophic losses by

means of reinsurance. If possible, the company would like to reduce the possibility of these

losses to zero. When seeking reinsurance, the company must choose between high pro�ts and

relatively high risk on the one hand, and modest pro�ts and high security on the other. To

obtain a degree of security, the company has to pay by buying this security on the reinsurance

market. The degree of security the company wishes to buy at prevailing prices will depend

on the company's objectives and overall policies.

If excess-of-loss insurance or stop-loss reinsurance with deductible t is purchased, the

amount paid by the reinsurer to the ceding insurer is

It =

8>>><
>>>:

0 if X � t

X � t if X > t;

(1.1)

where X, a random variable, is the aggregate claim. This class of policies is characterized by

the fact that the claim payments do not start until the loss exceeds the deductible amount,

t (the retention ). The amount of claims retained by the ceding insurer is

X � It =

8>>><
>>>:

X if X � t

t if X > t:

(1.2)

The amount retained, therefore, is bounded by t, explaining the name \stop{loss contract",

and (referring to t) the \retention".

When the deductible is t, the net stop{loss reinsurance premium EF [It] is

EF [It] =

Z
1

t

(x� t)dF (x); (1.3)
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where F is the claim distribution. In practice, however, the company will have only incom-

plete information about this distribution; perhaps only a mean and variance calculated from

past claims experience, or perhaps an empirical distribution of claim frequencies in a set of

intervals [aj�1; aj) j = 1; :::n. We denote by F the family of distribution functions consistent

with the known properties of the claim distribution. In trying to transfer their risk, the

company is interested in placing an upper bound on EF [It]. This is the \worst case" stop{

loss premium consistent with their information about the claim distribution function. The

company may also wish to bound the stop-loss premium from below. This determines the

\best case" stop{loss premium consistent with their information about the claim distribution

function.

In this paper, we consider computing upper and lower bounds on the stop{loss premium

with deductible t, when either the chi{square statistic or the modi�ed chi{square statistic,

which measure the discrepancy between the expected frequency and observed claim fre-

quency, have been assigned upper limits. In both cases, we apply the Lagrangian relaxation

method. It will be shown in Section 2 that the extremal distributions yielding the maximum

and minimum stop{loss premiums are discrete.

In Section 3, chi{square and modi�ed chi{square statistics will be reviewed along with

the empirical distribution of claims. Bounds will be derived in Section 4 and 5 and an

example will be provided to illustrate the computation. Proofs of all results are presented

in the Appendix.
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2 The Extremal Distributions Yielding Maximum and

Minimum Stop{Loss Premiums

Several bounds on the stop{loss premium EF [It] have appeared in the literature for situations

in which only partial information is known about the claim distribution F , e.g., the �rst two

moments. Bowers [1, Bowers,1969] showed that, when mean � and variance �2 are known,

max
F

EF [It] =
�

2

1

K +
p
1 +K2

; (2.1)

where K = t��

�
. This maximum is attained by the discrete extremal distribution

P [X = �+ �
�
K �

p
1 +K2

�
] =

�
K +

p
1 +K2

�2
1 +

�
K +

p
1 +K2

�2
P [X = �+ �

�
K +

p
1 +K2

�
] =

1

1 +
�
K +

p
1 +K2

�2 : (2.2)

Kemperman [4, Kemperman,1987] provided closed{form upper and/or lower bounds on the

stop-loss premium EF [It] with various restrictions on the claim distribution F . Cox [2,

Cox,1991] extended this result to the case in which, in addition to � and �2 being known,

an upper limit b is placed on the liability of the reinsurer. Under these conditions, the upper

and lower bounds on EF [It] are, respectively,

max
F

EF [It] =

8>>>>>>>><
>>>>>>>>:

�(�2+�2�t�)
�2+�2

0 � t � �2+�2

2�

��t+
p

(��t)2+�2

2

�2+�2

2�
< t � b2��2��2

2(b��)

(b�t)�2

(b��)2+�2
b2��2��2

2(b��)
< t � b

(2.3)
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and

min
F

EF [It] =

8>>>>>>>><
>>>>>>>>:

�� t 0 � t � �� �2

b��

�2+�2�t�

b
�� �2

b��
< t � �+ �2

�

0 �2

�
< t � b:

(2.4)

In these cases, the extremal distributions are also discrete, with probability massed at two

points.

In this paper we concern ourselves with the family of distribution functions F consisting

of distributions for which Pfai�1 � X < aig = qi, i = 1; 2; : : : ; n. X is the loss, a random

variable, and the ai's are nonnegative real numbers which form an increasing sequence, i.e.

a0 < a1 < a2 < : : : < an. The set of probabilities qi; i = 1; 2; : : : ; n, form a probability

function, that is 0 � qi � 1, and
Pn

i=1 qi = 1.

The following two lemmas were presented and proved in our earlier paper [5, Xu, Bricker,

and Kortanek, 1998]. According to these lemmas, the extremal distribution function will have

probability massed at n points. Furthermore, the number of points at which the probability

is massed will be the same as the number of intervals determining the empirical claims

frequency distribution.

Lemma 2.1 The distribution function F in the family F which maximizes the expectation

EF (It) given by (1.3) is discrete, with probability qi massed at ai, the right endpoint of interval

[ai�1; ai), i = 1,2,...,n.

Lemma 2.2 The distribution function F in the family F which minimizes the expectation

EF (It) given by (1.3) is discrete, with probability qi massed at ai�1, the left endpoint of
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interval [ai�1; ai), i = 1,2,...,n.

3 Empirical Observations and Chi{Square or Modi�ed

Chi{Square Statistics

For this paper we assume that empirical observations based on past claim experience are

available. These observations take the form of observed frequencies in the intervals [ai�1; ai)

for i = 1; 2; :::; n. We assume that this interval partition has at least one observation in each

interval. We have shown in the previous section that under these assumptions, the search

for extremal distributions in F can be restricted to those having mass only on the endpoints

of the given intervals.

The chi{square statistic, chi{square goodness{of{�t, or Pearson's goodness{of{�t is de-

�ned as the statistic

�2 =
nX
i=1

(Oi �Nqi)
2

Nqi
(3.1)

where Oi is the observed number of losses in the interval [ai�1; ai) for i = 1; 2; :::; n. N is the

total number of observations, and Nqi = N [F (ai)�F (ai�1)] is the expected number of losses

in group i, the interval [ai�1; ai). These classes could be those of the �tted ogive, which is

a continuous piecewise{linear function. The test statistic, �2, is approximately distributed

as a chi{square distribution with a number of degrees of freedom one less that the number

of groups. Since the Nqi in the denominator may be di�cult to evaluate, statisticians

sometimes use the modi�ed chi{square statistic which has the same asymptotic properties
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as the chi{square statistic. This modi�ed chi{square statistic [3, Hogg and Klugman,1984]

is de�ned to be

�02 =
nX
i=1

(Oi �Nqi)
2

Oi

: (3.2)

We will imposes bounds on either �2 or �02 in this paper as a constraint. Bounds on the

stop{loss premium will be calculated subject to either the restriction
P

i

�
(Nqi�Oi)

2

Nqi

�
� c; or

P
i

�
(Nqi�Oi)

2

Oi

�
� c; for some c > 0. (Details are in Sections 4 and 5.)

Also note that the bound on the chi-square statistic can be rewritten as

nX
i=1

O2
i

qi
� B; (3.3)

where B = N(C +N). The bound on the modi�ed chi-square statistic can be rewritten

nX
i=1

q2i

Oi

� B0; (3.4)

where B0 = C+N
N2 . Note that the functions of qi on the left sides of (3.3) and (3.4) are both

convex, so that the inequalities above de�ne convex feasible regions in the non{negative

orthant of Rn. This property is very important from a computational point of view.

4 Restricting the Chi{square Statistic

We use a Lagrangian approach to compute the bounds on the stop-loss premium subject to

the restriction �2 � c. We de�ne a Lagrangian dual objective function as the optimum of a

Lagrangian function for given values of the Lagrangian multipliers of the relaxed constraints.

The Lagrangian dual problem can be reduced to an optimization with respect to a single

dual variable.
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We wish to compute upper and lower bounds on the stop{loss premium when the chi-

square statistic of the loss distribution with respect to the observed losses is bounded by a

constant c > 0.

According to Lemma 2.1 and Lemma 2.2, the extremal distributions which yield the

upper bound and the lower bound must be discrete distributions x = (x1; x2; :::; xn); where

xi = PfX = aig and xi = PfX = ai�1g i = 1; 2; :::; n;

for upper and lower bounds respectively. Therefore, we restrict our search to discrete dis-

tributions of this form, and �nd bounds on the stop{loss premium by solving the following

optimization problem,

min
x

nX
i=1

�ixi

subject to
1

B

nX
i=1

O2
i

xi
� 1 (4.1)

nX
i=1

xi = 1

xi � 0 i = 1; 2; :::; n;

where

�i =

8>>><
>>>:
�(ai � t)+ for the upper bounding case

(ai�1 � t)+ for the lower bounding case;

(4.2)

for i = 1; 2; :::; n. The function (x � t)+ is de�ned as maxx(x � t; 0). Note that xi >

0; for any 1 � i � n, since if there is an i, 1 � i � n, such that xi = 0, then we must have

Oi = 0, so that
(Oi�Nxi)

2

Nxi
= 0: Otherwise the constraint (3.1) will be violated. If Oi = 0, there
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are no observations in the interval [ai�1; ai) and readjustment of the endpoints is needed.

Finally note that the upper bounding objective is the negative of the objective of (4.1).

Our primal problem is to minimize a convex (in fact linear) objective function over a

convex region. Introducing the Lagrangian multipliers � and � for the constraints above, we

obtain the Lagrangian function,

L�(x; �; �) =
nX
i=1

�ixi + �

 
nX
i=1

(O2
i =B)x

�1
i � 1

!
+ �

 
nX
i=1

xi � 1

!
; (4.3)

where x = (x1; x2; :::; xn)
t > 0; � 2 R � � 0, and

� =

8>>><
>>>:

U for the upper bounding case;

L for the upper bounding case.

(4.4)

The dual optimization will be

max
��0;�

h�(�; �) (4.5)

with the dual objective function h� de�ned as the value of the Lagrangian relaxation

h�(�; �) = min
x>0

L�(x; �; �): (4.6)

The following lemma, whose proof appears in the Appendix, provides us a closed-form ex-

pression for the dual objective function.

Lemma 4.1 The Lagrangian dual objective function (of problem (4.1)) is

h�(�; �) =

8>>><
>>>:

2
q

�

B

Pn
i=1Oi

p
�+ �i � (�+ �) for � 2 G�

�1 for � 2 G�;

(4.7)
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where � 2 fU; Lg , G� is the complement of G�, and G� is de�ned as the following :

G� =

8>>><
>>>:

(an � t;+1) for � = U

[0;+1) for � = L:

(4.8)

To maximize the Lagrangian dual objective function h�(�; �) in (4.7), we may restrict our

search to � 2 G�. The partial derivatives of h�(�; �) with respect to � and � are respectively,

@h�(�; �)

@�
=

1p
�B

nX
i=1

Oi

q
�+ �i � 1 (4.9)

@h�(�; �)

@�
=

r
�

B

nX
i=1

Oip
�+ �i

� 1: (4.10)

Setting
@h�(�;�)

@�
= 0, and solving for � yields

� =
1

B

 
nX
i=1

Oi

q
�+ �i

!2

; (4.11)

which is nonnegative, i.e., feasible, for � 2 G�. Substituting (4.11) into (4.7) to eliminate

the dual variable �, we obtain

h�(�) =

8>>><
>>>:

1
B

�Pn
i=1Oi

p
�+ �i

�2 � � for � 2 G�

�1 for � 2 G�:

(4.12)

In terms of the single variable �, the expressions for the dual objective function for the upper

bound (negative of h�(�)) and lower bound will be as follows respectively,

�hU (�) = � 1

B

0
@p�X

i<k

Oi +
X

i � kOi

q
�� (ai � t)

1
A
2

+ � for � > an � t (4.13)

hL(�) =
1

B

0
@p�X

i�k

Oi +
X

i > kOi

q
�+ (ai�1 � t)

1
A
2

� � for � � 0: (4.14)

The Lagrangian dual objective function we have obtained above is convex in the one

variable �, so that the maximization of the Lagrangian dual objective is an optimization
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problem with no constraint except for lower bounds. Lower bounds of an � t for the upper

bounding problem and 0 for the upper bounding problem on the dual variable �. Therefore,

we want to solve the optimization problem

max
�2G�

h�(�): (4.15)

Since our primal problem is to minimize a convex objective function subject to convex

constraints (as we mentioned earlier), there is no duality gap between primal and dual

problems. The optimal value of the dual problem (4.15) will be the optimal value of the

primal problem (4.1).

The dual problem (4.15) can be easily solved by a one{dimensional search method (e.g.,

Newton's method) modi�ed to enforce the lower bound on the dual variable �� for � =

U or L.

If ��� for � = U or L are the optimal values of the dual variables, then the optimal primal

solutions, i.e., the extremal distributions, will be

xUi =

8>>><
>>>:

Oi

r
��
U

B��
U

i < k

Oi

r
��
U

B(��
U
�(ai�t))

i � k;

(4.16)

for the upper bounding problem, where ��U is given by (4.11) when � = U as shown in the

proof of Lemma 4.1, and where k is the smallest index such that ak > t. Similarly for lower

bounding we have,

xLi =

8>>><
>>>:

Oi

r
��
L

B��
L

i � k

Oi

r
��
L

B(��
L
+(ai�1�t))

i > k;

(4.17)
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where ��L is given by equation (4.11) when � = L. (The derivation of (4.17) appears in the

proof of Lemma 4.1.)

5 Restricting the Modi�ed Chi-Square Statistic

We will next consider the upper and lower bounds on the stop{loss premium over all dis-

tributions whose modi�ed chi{square statistic does not exceed a positive quantity c. As in

Section 4, we will use the Lagrangian dual approach as a computational tool.

The Modi�ed Chi{square statistic of a discrete distribution x is de�ned to be

�02(x) =
nX
i=1

(Nxi � Oi)
2

Oi

: (5.1)

Bounds on the stop{loss premium will be provided by solving the optimization problem,

min
nX
i=1

�ixi

subject to
nX
i=1

(Nxi � Oi)
2

Oi

� c (5.2)

nX
i=1

xi = 1

xi � 0;

where �i is de�ned the same as (4.2) in Section 4. Note that the objective function of (5.2)

is the same as (4.1), so the optimal objective value of the upper bounding problem is the

negative of min
Pn

i=1�(ai � t)+xi.

The Lagrangian function of the problem (5.2) will be

L�(x; �; �) =
nX
i=1

�ixi + �

 
nX
i=1

(Nxi � Oi)
2

Oi

� c

!
+ �

 
nX
i=1

xi � 1

!
; (5.3)
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where x � 0, � � 0, � 2 R, and � 2 fU; Lg is de�ned the same as (4.4) in Section 4.

The Lagrangian dual of problem (5.2) will be

max
��0;�

h�(�; �) (5.4)

where h�(�; �) = minx�0 L
�(x; �; �):

A closed{form expression for h�(�; �) is provided by the lemma below.

Lemma 5.1 The Lagrangian dual objective function h�(�; �) will be

h�(�; �) =
��
2N2�

nX
i=1

Oi�i +
1

N

nX
i=1

Oi�i �
1

4N2�

nX
i=1

Oi�
2
i � (�c+

�2

4N�
)

for � 2 G� (5.5)

= �1 otherwise; (5.6)

where G�
is a feasible set for �, and is given as follows

G� =

8>>><
>>>:

(�1; 2N�] for � = U

(�1; 2N�� (an�1 � t)] for � = L:

(5.7)

We can obtain the required lower bound on the stop{loss premium by �ndint the optimum

of the following Lagrangian dual problem, namely

max
��0;�2G�

h�(�; �): (5.8)

The partial derivatives of h� with respect to � and � are given by

@h�(�; �)

�
=

1

4N2�2

nX
i=1

Oi�
2
i � c+

�

2N2�2

nX
i=1

Oi�i +
�2

4N�2
� c

@h�(�; �)

�
= � 1

2N2�

nX
i=1

Oi�i �
�

2N�
: (5.9)
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Setting the partial derivative (5.9b) equal to zero yields the following stationary point for �

� = � 1

N

nX
i=1

Oi�i:

Substituting this expression into (5.9a) and setting the resultant expression equal to zero

yields

�2 =
1

4cN2

"
�2N + 2�

nX
i=1

Oi�i +
nX
i=1

Oi�
2
i

#

=
1

4cN2

2
4� 1

N

 
nX
i=1

Oi�i

!2

+
nX
i=1

Oi�
2
i

3
5 :

Thus we obtain the stationary point (�; �),

� =
1

2N
p
c

vuut� 1

N

 
nX
i=1

Oi�i

!2

+
nX
i=1

Oi�
2
i

� = � 1

N

nX
i=1

Oi�i: (5.10)

Lemma 5.2 The optimal dual objective value of the problem (5.2) will be

h�
�

=
1

N

 
nX
i=1

Oi�i

!
�
p
c

N

vuut nX
i=1

�2
iOi �

1

N

 
nX
i=1

�iOi

!2

: (5.11)

Expressing the optimal dual objective values for the upper bound (negative of hU�) and the

lower bound separately, we have,

�hU� = 1

N

X
i�k

(ai � t)Oi +

p
c

N

vuuutX
i�k

(ai � t)2Oi �
1

N

0
@X
i�k

(ai � t)Oi

1
A
2

; (5.12)

hL
�

=
1

N

0
@X
i>k

Oi(ai�1 � t)

1
A�

p
c

N

vuuutX
i>k

(ai�1 � t)2Oi �
1

N

0
@X
i>k

(ai�1 � t)Oi

1
A
2

: (5.13)

While the bounds on the stop{loss premium with a restriction on the regular chi{square

statistic may be computed numerically by an iterative one{dimensional search procedure,
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Amount of loss Number of losses

0{250 71

250{350 327

350{400 167

400{450 123

450{500 97

500{600 128

600{700 103

700{800 67

800{1000 68

1000{1500 25

Table 6.1: Family Dental Coverage

as shown in Section 4, we have shown in this section that when the modi�ed chi{square

statistic is used, a closed{form expression is obtained for both upper and lower bounds, thus

eliminating the need for numerical optmization.

6 Example

In this section we present a small example as an illustration of the results presented in

earlier sections. The data we consider in Table 6.1 represents losses on individual family

dental claims. We will consider aggregate losses on dental coverage.
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The sample mean and the sample standard deviation for these losses are x = 465:986

and s = 223:1346, respectively.

The endpoints of the claim intervals which determine the ai's, are 0, 250, 350, 400,

450, 500, 600, 700, 800, 1000, 1500 for i = 0; 1; : : : ; 9, respectively. The observed relative

frequencies p are

(0:060; 0:278; 0:142; 0:105; 0:082; 0:109; 0:088; 0:057; 0:058; 0:021)

. The deductible t and the upper limit c on the chi{square statistic will be arbitrarily selected

to be 750 and 3:325, respectively. The upper bound on the stop{loss premium can be found

by solving the optimization problem

max 50x8 + 250x9 + 750x10 (6.1)

subject to

10X
i=1

�
O2
i =1386886:2

�
x�1i � 1 (6.2)

10X
i=1

xi = 1 (6.3)

xi � 0 ; i = 1; 2; : : : ; 10 (6.4)

where Oi is the observed frequency in ith interval, i.e.,

O = (71; 327; 167; 123; 97; 128; 103; 67; 68; 25) :

Equivalently, this upper bound may be found by solving the dual problem

min
�>750

�� 1

1604

h
1016

p
�+ 67

p
�� 50 + 68

p
�� 250 + 25

p
�� 750

i2
: (6.5)
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Figure 6.1 shows this convex dual objective function. The dual problem is computationally

far easier to solve than the primal. A one-dimensional numerical optimization method yields

the objective value 40:568363 for � = 1511:6387.

The extremal distribution that yields the maximum stop{loss premium may be found by

using formula (4.16) in section 4 with ��U equal to 1511:6387 and ��U equal to 1471:1. Using

these values gives

PU = (0:05947448; 0:27391768; 0:13989068; 0:10303325; 0:08125387; 0:10722160;

0:08627988; 0:05707568; 0:06235018; 0:02950270);

which is shown in Figure 6.2. Here we plot the histogram of the upper extremal distribution

and the frequency histogram.

Similarly the lower bound on the stop{loss premium may be found by solving

min 50x9 + 250x10

subject to (6.2), (6.3), and (6.4), or, equivalently by solving the Lagrangian dual problem,

namely

max
��0

��+ 1

1604

h
1083

p
�+ 68

p
�+ 50 + 25

p
�+ 250

i2
: (6.6)

This concave dual objective function is shown in Figure 6.4. Its maximum value is

6:4885016 , achieved at � = 254:14634. Again, the extremal probability distribution pro-

ducing this premium is found from formula (4.17), in section 4, where ��L = 254:14634 and

��L = 260:6348. This distribution is

PL = (0:06105374; 0:28119115; 0:14360527; 0:10576915; 0:08341144; 0:110068710;
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0:08857091; 0:05761409; 0:05345194; 0:01526362):

See the histogram of the lower extremal distribution together with the observed frequency

histogram in Figure 6.3.

Figure 6.5 illustrates the variation of the upper and lower bounds, again for deductible

t = 750, as the upper bound on the chi{square statistic is relaxed.

We envision that one use of our methodology will be in the preparation of curves such

as that shown in Figure 6.6 to be used by the risk manager in choosing the deductible t.

Here, the maximum and minimum stop{loss premium are shown for varying values of the

deductible t, using c = 3:325.

The modi�ed chi{square model in section 5 with t = 750 and c = 3:325 yields the

upper and lower bounds on the premium 39:6753 and 6:2120, given by (5.12) and (5.13),

respectively. Also, the optimal dual variables, i.e., �'s in

(5.10), are �U = �33:2483 and �L = �8:2058 . Equation (0.12) yields the primal solutions

xU
�

= (0:0595; 0:2681; 0:1399; 0:1031; 0:0813; 0:1073; 0:0863; 0:0574; 0:0633; 0:0280)

xL
�

= (0:0611; 0:2754; 0:1437; 0:1059; 0:0835; 0:1102; 0:0886; 0:0577; 0:0543; 0:0137);

i.e. the extremal distributions attaining the upper and lower bounds, respectively.

As the deductible t is varied, the variation of the bounds on the premium is shown in

Figure 6.7. Here, the maximum and minimum stop{loss premium is shown for varying values

of the deductible t, using c = 3:325 as upper limit of the modi�ed chi{square statistic.
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Figure 6.1: Example dual objective function yielding upper bound on premium
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Figure 6.3: The extremal distributions of pL and p
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Figure 6.4: Dual objective function yielding lower bound on premium
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Figure 6.5: Upper bound on premium vs. maximum chi{square c for t = 750

24



0 500 1000 1500
0

100

200

300

400

500

600

Deductible t

LB
ou

nd
 &

 U
B

ou
nd

Family Dental Claim

Chi−square Constraint
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Appendix

Proof ( of the inequality(3.3)): since

nX
i=1

(Nqi � Oi)
2

Nqi

=
nX
i=1

N2q2i � 2NOiqi +O2
i

Nqi

=
nX
i=1

 
Nqi � 2Oi +

O2
i

Nqi

!

= N
nX
i=1

qi � 2
nX
i=1

Oi +
nX
i=1

O2
i

Nqi

= N � 2N +
nX
i=1

O2
i

Nqi

= �N +
nX
i=1

O2
i

Nqi
:

The last equation is obtained using the fact that
Pn

i=1 qi = 1 and
Pn

i=1Oi = N . Letting

B = (N + c)N , the constraint (3.3) is obtained. 2

Proof (of Lemma 4.1): The Lagrangian dual objective function (of problem (4.1)) will be

h�(�; �) = min
x�0

L�(x; �; �): (0.1)

Recall L� in (4.3),

L�(x; �; �) =
nX
i=1

�ixi + �

 
nX
i=1

(O2
i =B)x

�1
i � 1

!
+ �

 
nX
i=1

xi � 1

!
:

The Lagrangian function L� has partial derivatives

@L�

@xi
= �+ �i �

�O2
i

B
x�2i (0.2)

From (0.2), we have

xi = Oi

s
�

B(�+ �i)
for i = 1; 2; : : : ; n : (0.3)

27



For xi to be feasible, we must have � > ��i, for all i. The stationary points only when

� 2 G�, where � 2 fU( Upper bound case); L( Lower bound case )g, and

G� =

8>>><
>>>:

(an � t;+1) if � = U

(0;+1) if � = L

(0.4)

If � = U , � � (an � t), no stationary point exists, recall in (4.3) whem � = U and �i =

�(ai � t)+,

LU(x; �; �) =
�

B

nX
i=1

O2
i x

�1
i +

X
i<k

�xi +
X
i�k

(�� (ai � t)) xi � (�+ �) (0.5)

where k is the smallest integer such that ak � t. If � � (an � t) � 0 then LU(x; �; �) is

unbounded below for su�ciently large xn, i.e.,h
U (�; �) = �1 if �� (an � t) � 0. )

Therefore, when the dual problem

max
�;�

hU(�; �)

is solved, we can restrict our search to � larger than (an � t), i.e., for which

hU(�; �) > �1:

Consider now the lower bounding problem, that is when � = L. Recall in (4.3) when

� = L and �i = (ai�1 � t)+,

LL(x; �; �) =
X
i�k

�xi +
X
i>k

[�+ (ai�1 � t)] xi + �
X
i

(O2
i =B)x

�1
i � (�+ �): (0.6)

Consider �rst � < 0. In this case, it is clear from (0.6) that LL(x; �; �) is unbounded below

as x1 increase, i.e.

hL(�; �) = min
x�0

LL(x; �; �) = �1 � < 0:
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Secondly, consider the case � = 0, i.e.

min
x�0

LL(x; �; 0)

where

LL(x; �; 0) =
X
i�k

�O2
i

Bxi
+
X
i>k

"
(ai�1 � t)xi +

�O2
i

Bxi

#
� �:

For i > k;

@LL(x; �; 0)

@xi
=

d

dxi

n
[ai�1 � t]xi +

�
�O2

i =B
�
x�1i

o
= (ai�1 � t)� �O2

i =Bx
�2
i = 0

=) x2i =
�O2

i

B(ai�1 � t)
; xi = Oi

s
�

B(ai�1 � t)
for i > k:

For i � k; however,

@LL(x; �; 0)

@xi
=

d

dxi

h
�O2

i =Bx
�1
i

i
= ��O2

i =Bx
�2
i 6= 0 8xi;

i.e., LL(x; �; �) doesn't have a stationary point, but terms in 1
xi
! 0 as xi ! 1 for i � k.

And so we have, for the case � = 0,

hL(�; 0) =
X
i>k

(ai�1 � t)Oi

s
�

B(ai�1 � t)
+ �

X
i>k

(O2
i =B)

1

Oi

r
B(ai�1�t)

�

� �;

which simpli�es to

hL(�; 0) = 2

r
�

B

X
i>k

Oi

q
ai�1 � t� �: (0.7)

To �nd the stationary point for hL(�; 0), we �nd its partial derivative with respect to �,

which is

@hL(�; 0)

@�
=

1p
�B

X
i>k

Oi

q
ai�1 � t� 1:
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Setting
@hL(�;0)

@�
= 0, and solving for

� yields

� =
1

B

0
@X
i>k

Oi

q
ai�1 � t

1
A
2

: (0.8)

That is

max
��0

hL(�; 0) =
2p
B

0
@X
i>k

Oi

q
ai�1 � t

1
A 1p

B

0
@X
i>k

Oi

q
ai�1 � t

1
A� 1

B

0
@X
i>k

Oi

q
ai�1 � t

1
A
2

=
1

B

0
@X
i>k

Oi

q
ai�1 � t

1
A
2

: (0.9)

Finally, we consider � 2 G�, which is shown on (0.4) above, xi in expression of (0.3) is valid.

Therefore, in the Lagrangian dual problem

max
��0;�

h�(�; �)

we may restrict � to values for which hL(�; �) > �1, i.e.,

max
��0;�2G�

h�(�; �):

Now let's examine more closely our Lagrangian dual objective function when � 2 G�:

h�(�; �) =
nX
i=1

(�+ �i)Oi

s
�

B(� + �i)
+

�

B

nX
i=1

O2
i

1

Oi

q
�

B(�+(ai�1�t))

� (�+ �)

=

r
�

B

nX
i=1

Oi

q
�+ �i +

r
�

B

nX
i=1

Oi

q
�+ �i � (�+ �);

which simpli�es to

h�(�; �) = 2

r
�

B

nX
i=1

Oi

q
�+ �i � (�+ �); for � 2 G�, � � 0: (0.10)
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where G� =

8>>><
>>>:

(an � t;+1) for � = U

[0;+1) for � = L :

2

Proof ( of Lemma 5.1 ): Note that L� is quadratic in x, that is, we consider the stationary

point of the convex quadratic function L�, and so the partial derivatives are linear:

The partial derivative of L� with respect to xi is,

@L�

@xi
=

2�N2

Oi

xi + (�i + �� 2N�); (0.11)

from which we obtain the stationary point,

xi =
[2N�� (�+ �i)]Oi

2N2�
for i = 1; 2; : : : ; n (0.12)

Since x is restricted to nonnegative values, the stationary point (0.12) is feasible if and only

if � and � have appropriate values, namely � � 2N���i; for all i, that implies that � 2 G�,

where G� � R are the feasible regions , where � 2 fU; Lg, for � for the upper bounding and

lower bounding problems respectively. The nonnegativity of xi give us

G� =

8>>><
>>>:

(�1; 2N�] if � = U

(�1; 2N�� (an�1 � t)] if � = L:

The KKT conditions for optimality (since x is restricted to be nonnegative) includes the

\complementary slackness" conditions

xi
@L�

@xi
= 0; for i = 1; 2; :::n;

which is satis�ed if stationary point (0.12) is nonnegative. Otherwise, the optimum must
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satisfy xi = 0 and @L�

@xi
� 0. But when xi = 0 and � 2 G�, the values of @L�

@xi
are

@L�

@xi
= �� 2�N + �i for i = 1; : : : ; n: (0.13)

We can see that @L�

@xi
is negative. for some i, for instance, i < n � 1 if � = L, and i > k

if � = U , xi cannot be optimal while @L�

@xi
is negative. If � < 2�N � (an�1 � t), then,

h�(�; �) = �1. Hence the search in (5.4) may be restricted to

max
��0;�2G�

hL(�; �);

i.e., the case in which the optimizing x in

L�(x; �; �) =
nX
i=1

�ixi + �

 
nX
i=1

(Nxi � Oi)
2

Oi

� c

!
+ �

 
nX
i=1

xi � 1

!
(0.14)

is a stationary point.

Substituting (0.12) into L�(x; �; �) yields

h�(�; �) =
nX
i=1

2N�� �� (ai�1 � t)

2N2�
Oi�i + �

nX
i=1

�
N 2N�����i

2N2�
Oi � Oi

�2
Oi

+ �
nX
i=1

2N�� �� �i

2N2�
Oi � �� �c

=
1

4N2�

nX
i=1

(2N�� �� �i)
2Oi

� 1

2N2�

nX
i=1

(2N�� �� �i)
2Oi � (�c+ �)

= � 1

4N2�

nX
i=1

(2N�� �� �i)
2Oi � (�c+ �)

= � 1

4N2�

nX
i=1

Oi

�
4N2�2 + �i + �2 � 4�N�i � 4�N�+ 2�i�

�
� (�c+ �)

= � 1

4N2�

nX
i=1

Oi

�
�2
i � 4N��i + 2��i

�
�
 
�c+

�2

4N�

!
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Thus we obtain

h�(�; �) = � 1

4N2�

nX
i=1

Oi�
2
i +

��
2N2�

nX
i=1

Oi�i +
1

N

nX
i=1

Oi�i � �c� �2

4N�
: (0.15)

2

Proof ( of Lemma 5.2 ):

Recall that the Lagrangian dual objective function h�(�; �) in Lemma 5.1 is:

h�(�; �) = � 1

4N2�

nX
i=1

Oi�
2
i +

��
2N2�

nX
i=1

Oi�i +
1

N

nX
i=1

Oi�i � �c� �2

4N�
(0.16)

and the stationary point of (�; �) in the equations of (5.10):

� =
1

2N
p
c

vuut� 1

N

 
nX
i=1

Oi�i

!2

+
nX
i=1

Oi�
2
i

� =
�1
N

nX
i=1

Oi�i: (0.17)

Substituting (�; �) of (0.17) into h�(�; �) of equation (0.16), we have,

max
��0;�2G�

h�(�; �) = �
nX
i=1

1

2N2
�iOi

 �1
N

nX
i=1

�iOi

!
2N
p
cqPn

i=1Oi�
2
i � 1

N
(
Pn

i=1 �iOi)
2

+
1

N

nX
i=1

�iOi �
 �1
N

nX
i=1

�iOi

!
1

2N2

 
nX
i=1

�iOi

!
2N
p
cqPn

i=1Oi�
2
i � 1

N
(
Pn

i=1 �iOi)
2

�pc
qPn

i=1Oi�
2
i � 1

N
(
Pn

i=1 �iOi)
2

2N
p
c

� 1

N2

 
nX
i=1

�iOi

!2
1

4N

2N
p
cqPn

i=1Oi�
2
i � 1

N
(
Pn

i=1 �iOi)
2

= � 1

2N

p
c (
Pn

i=1Oi�
2
i )qPn

i=1Oi�
2
i � 1

N
(
Pn

i=1 �iOi)
2
+

1

N

nX
i=1

�iOi

+

p
c (
Pn

i=1Oi�i)
2

N2
qPn

i=1Oi�
2
i � 1

N
(
Pn

i=1 �iOi)
2
�
p
c

2N

vuut nX
i=1

Oi�
2
i �

1

N

 
nX
i=1

�iOi

!2

=
1

N

nX
i=1

�iOi +
p
c
�N Pn

i=1Oi�
2
i + (

Pn
i=1 �iOi)

2

N2
qPn

i=1Oi�
2
i � 1

N
(
Pn

i=1 �iOi)
2
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We obtain the following,

h�� =
1

N

nX
i=1

�iOi �
p
c

N

vuut nX
i=1

Oi�
2
i �

1

N

 
nX
i=1

�iOi

!2

(0.18)

2
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