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Abstract

This paper combines the CCR output-oriented model of data envelopment analysis (DEA) and Factor
Analysis (FA) to evaluate the performance of academic units of a university’s graduate programs relative to
their counterparts nationally. We propose DEA/FA as a means of increasing the utility of DEA for policy
decisions when there is uncertainty about the output constructs relevant to the programs. We discuss the
concept that an academic program often maximizes the levels of some constructed outputs (CO), which
may not themselves be directly observable. By means of FA, these COs can be deduced from the
observable outputs, and can be expressed as a linear combination of observed and random components.
Using the COs  lessen the caveat of extreme specialization without the requirement for value judgements.
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Introduction

Data Envelopment Analysis (DEA) is a non-parametric approach to evaluating

technical efficiency which roots can be traced back to the work of Farrel (1957) on

productive efficiency. The breakthrough, however, came in the research work undertaken

by Charnes, Cooper and Rhodes (CCR) in 1978. Since its inception, DEA has received

widespread acceptability particularly in its application to public sector operations, such as

education and health care (Thenassoulis and Dunstan 1994, Tomkins and Green 1988,

Sinauny-Stern et al. 1994, Rhode and Southwick 1993, Cooper et al. 1996 and 2000).,

where a hierarchy of policy objectives, vaguely defined functional form of the inputs-

outputs relationships, absence of market prices for the inputs-outputs and multiplicity of

environmental factors are integral to the system structures

 In this paper we specifically employ the CCR output-oriented model with a

single constant input (CCR-OO-CI), although the equivalent BCC model without inputs

(Lovell et al. 1999) could also be used. In the educational sector, for example, the use of

the CCR-OO-CI model is appropriate when comparing the performance of a university’s

internal departments to their external peers with respect to a number of performance
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measures. Since it is normally difficult or even impossible to obtain from external

academic institutions reliable measures of input with a fine degree of granularity (by

department), an acceptable approach in this case could be to assume a single input which

is identical across the DMUs.

The CCR-OO-CI model produces meaningful radial efficiency measures (Lovell

et al. 1999), but it presents some important drawbacks that can lead to wrong policy

decisions. We show that this model generally tends to crowd the frontier with specialists

who may hide poor performance by ignoring input-output mixes showing less

advantages. This problem is less pervasive when variables are continuous rather than

restricted to discrete levels (i.e. L = 1,2,...p). Additionally, the model places strict

restrictions on the maximum size of the set of output variables to be included. When the

variables are restricted to values in a closed discrete interval, a sizable proportion  (over

60%) of DMUs are deemed efficient, even when the number of output variables relative

to the number of DMUs (the sample size) is small  (i.e. < 1/7). The number of efficient

DMUs increases (to 90% or more) as the number of variables relative to the sample size

increases (i.e., < 1/4 ).  When variables may assume continuous values, however, the

proportion of efficient DMUs decreases significantly (to less than 50%) when the number

of variables relative to the sample size is less than 1/7. In both cases, however, a large

proportion of extreme specialist DMUs define the frontier.   

The obvious alternatives to deal with these drawbacks are: (a) use of continuous

variables, (b) a reduction of the number of output variables, (c) constraints on the feasible

production possibility or on the weights to discourage specialization and to ensure

compliance with higher order policies or controls. Examining these alternatives we

immediately notice some difficulties. First:  alternatives (a) and (b) are not always

possible. In reality, output variables are not always continuous and selection of a very

reduced number of output variables relative to the sample size can lead to model

misspecification by excluding relevant variables while including irrelevant variables. In

addition, departmental policies or management requirements can impose some

restrictions. Second: there are limitations on the imposition of restrictions, such as the

necessity of value judgements to account for hierarchy in policy objectives. Third: we

argue that academic programs often maximize the levels of some constructed outputs
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(CO), which may not themselves be directly or only vaguely defined. Uncertainty about

the form of these COs constrains the analyst's choice of output variables. Given this

uncertainty, the inclusion of a larger set of output variables may be desirable in order to

reduce the risk of excluding relevant variables, or when a goal is to evaluate the relative

efficiency of the DMUs in term of their performance of some output constructs.

As an alternative, we propose combining DEA and factor analysis (DEA/FA) as a

viable and effective approach for overcoming the limitations of the CCR-OO-CI model

and to improve discrimination between the efficient DMUs. FA is a multivariate

analytical technique which is widely used in social science and other research. First, we

use FA both (a) to extract a parsimonious set of variables from the observable output

variables which explains a substantial proportion of the variance, and (b) to generate a set

of new variables defined in a continuous domain. The extracted output levels are

expressed as linear combinations of the original levels plus some random components.

Second, we claim that this economical set of variables is a good representation of the

relevant latent output constructs (COs) being maximized, and that evaluating academic

departments with respect to these COs is more congruent with departmental policies. It

also renders a more appropriate measure of efficiency. Third, we argue that using the CO

scores in lieu of the original data effectively constrains the optimal choice of weights

(policy) available to the programs or DMUs while still allowing “unrestricted choice” of

policy in the DEA model. This form of constraining the weights serves to obtain

efficiency measures that reflect higher-order policies or controls, accounting for

externality effects and equity considerations. In this sense, DEA/FA can be valuable for

controlling extreme specialization, a known drawback of DEA while still maintaining its

advantages.

 Although DEA differs from long-standing statistical techniques in some

important ways, they need not be mutually exclusive. For some time, an extensive body

of work has emerged considering alternative ways in which DEA and some statistical

techniques can be combined to improve the results or produce complementary solutions

to the problem ( Rhodes and Southwick, 1993; Arnold et al. 1996, Bordhan 1998,  Ueda

and Hoshiai 1997, Zhu 1998).  The combined use of DEA and multivariate analysis

techniques is particularly notable. For instance, Zilla and Friedman (1998) combine DEA
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and Discriminant Analysis to develop a new method, “Discriminant Data Envelopment

Analysis of Ratios (DR/DEA)”, that allows the determination of the “best common

weight” in order to rank all units on the same scale. Ehreth(1994) uses factor analysis as a

means for selecting the most appropriate measures for further analysis while Zhu (1998)

compares DEA with principal component analysis (PCA) as an alternative or even

complementary ranking technique. Ueda and Hoshiai (1997), on the other hand, propose

using principal component analysis as a means of weighting inputs and/or outputs and

summarizing them parsimoniously rather than selecting them.  Our approach of

combining DEA and FA is similar to that of Ueda and Hoshiai (1997), but differs from

theirs in come important concepts and the purposes for combining both techniques.

The remainder of this paper is organized as follows: first we explain the

characteristics of the OO-CCR-CI model.  Second we explain our rationale for combining

DEA and FA. Third, we present the FA model.  Fourth, we discuss the data, following

which we discuss the findings. Finally, we present the conclusion.

The output-oriented CCR model with a single constant input: use and limitations

The Output-oriented Charnes-Cooper-Rhodes model with constant input (OO-CCR-

CI) produces meaningful results when the objective is to measure the relative efficiency of

the decision-making units (DMUs) in the production of a set Y of variable outputs given a

vector X  of constant inputs:
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Note that λφ,  are the decision variables to be optimized. Let })(/),{( YXgYXP =ℜ∈= +

be the production possibilities set, where ),...,( 21 nyyyY = is an 1xn  vector of outputs  that

can be technically produced with ),...,( 21 sxxxX = , a 1xs  vector of constant inputs, with

the technology g , which does not have to be specified a priori in DEA. The form of

g determines the type of returns to scale of the system. Since rescaling the vector of



5

constant input to level 1 will not affect the optimal efficiency score obtained by DEA, we

can set TX to 1s. Under the assumption of diminishing marginal productivity of the inputs,

P  is convex. And for the sector or units for which g  is specified, P  is specific. For any

PY ∈  the short-run conditions nY ≤  and )(max XgY ≤  hold. These conditions limit the

size of the set of output variables that could be used for evaluating the DMUs relative

efficiency using M1, and precludes the assumption of infinity (∞) elasticity of output

(production) with respect to the input. Infinite output elasticity implies unbounded

production, which is unrealistic even in an educational environment. DEA partitions P into

two subsets, namely, the inefficient production set })()(/),{()( *YXgXgYXYiP oo === p

enveloped by the frontier, and the efficient production set )}(/),{()( ** XgYXYeP ==  that

defines the frontier. Where *Y is an observed output for which 1* =φ  for some ** Λ∈λ ,

the optimal policy set, and oY  is an observed output for which 1* pφ  for some ** Λ∈λ .

In the educational sector, for example, the use of M1 is appropriate when

comparing the performance of a university’s internal academic programs (herein the

DMUs) with respect to units of similar discipline externally. Since it is normally difficult

or even impossible to obtain reliable input measures from external academic institutions

with a fine degree of granularity (by department), an acceptable approach in this case

could be to assume a single input, which is identical across the units. Using partial

performance outputs for the Y ( the ratios of the observed performance of the DMU to

the average performance of its external peers) the DEA ranking of the DMUs can be

compared using MI, which then expresses the degree to which DMU k has achieved a

more favorable competitive position, compared with external peers.(the relative

efficiency of DMU k).

It can be seen that DMU k with a vector Y of outputs such that for some output

levels )( nmymk ≤  in the vector, the observed performance is advantageous, the DMU

will appear efficient by choosing ** Λ∈λ  ( sp
*λ ) that exploits its competitive advantage in

the production of mky and dominates all DMUs showing lower performance. Although

sp
*λ  appears optimal under DEA, not only can it hide low performance but it may also

violate higher-order policies. Furthermore, it can lead to wrong policy decisions, such as
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wrong target setting. Thus, the utility of the results is an important concern when

specifying a DEA model.

In general, the likelihood that DMU k is deemed efficient by DEA is conditional

upon the effectiveness and efficiency of its production policy (i.e., its competitiveness).

The adequacy of the frontier determined by the DEA model, however, still depends on

the model specification, such as the set of inputs and outputs included, a choice regarding

returns to scale, assumptions regarding higher-order policies or controls, consideration of

externalities and value judgements. That is, the adequacy of the DEA result is model-

dependent.

Although the type of output (discrete or continuous) should have no effect on the

discriminating power of the DEA model, this is not corroborated by the results we have

observed using the CCR-OO-CI model first with discrete and then with continuous

outputs.  The model's ability to discriminate between efficient and inefficient DMUs was

observed to be reduced when output variables are discrete. In addition, the results of the

model are highly sensitive to the cardinality of Y . The generally accepted criterion to

ensure satisfactory discrimination of the DEA analysis is kns 3/1)( ≤+ , where

)( ns + represents the combined number of inputs and outputs and k is the number of

DMUs in the sample. With the CCR-OO-CI model, however, this upper limit on the

combined number of input and output levels appears to be substantially smaller.

Furthermore, it appears to be dependent upon the type of output variables (discrete or

continuous).

 Our finding is that when the outputs variables assume discrete levels (i.e. L

(1,2,…p) ) a sizable proportion  (over 60%) of DMUs are deemed efficient, even when

the proportion of output variables relative to the sample size is small  (i.e. < 1/7). This

value increases (to 90% or more) as the number of variables relative to the sample size

increases.  In the case with continuous variables, the proportion of DMUs ranked

efficient decreases significantly (< 50%) when the number of variables relative to the

sample size is small (<1/7). In both cases, however, virtually all DMUs effectively

ignored some or most of the input-output mixes in order to present themselves in the best

possible light. Policies of extreme specialization, although technically optimal, are input-
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output mix sub-optimal, which raise serious concerns about the adequacy of the

efficiency frontier for policy development.

Several approaches can be immediately advanced to deal with these apparent

drawbacks of the CCR-OO-CI model: (a) the use of continuous variables, (b) reduction of

the number of output variables, and (c) the imposition of restrictions on the feasible

production possibility or on the weights. There are, however, limitations with these

approaches. First: in reality, output variables are not always continuous. In some social

environment, like education, measuring the outcomes in some discrete scale may even be

common.

Second: selection of a very reduced number of output variables relative to the

sample size can be risky. Relevant variables can be excluded while irrelevant variables

may be included, which leads to model misspecification (Smith, 1997). Furthermore, the

inclusion of a larger number of variables relative to the sample size may be desirable in

the analysis of educational units when there is uncertainty about the functional form of

constructed outputs that are being maximized. We claim that vagueness of the construct

is almost pervasive in educational environment because DMUs do not openly reveal their

policies.

Third:  imposing restrictions, such as placing constraints on the feasible

production possibilities or placing constraints on the weights, can present some

difficulties. Adoption of restrictions on DEA is prompted by the need to reflect higher-

order policies or controls, externality effects and equity consideration. The imposition of

constraints, however, requires not only knowledge of these policies and controls and the

form of externalities, but also requires careful selection of the constraints in order to

avoid rendering the model infeasible or contradicting the purpose of the restrictions.

Imposition of restrictions, therefore, implies incorporating prior views or information

regarding the assessment of efficiency of the DMUs (Allen et al. 1997, Roll et al. 1991,

Wong and Beasley 1990).

As an alternative, we explore combining DEA and factor analysis (FA) to help

overcome the limitations of the CCR-OO-CI model. ), FA is a multivariate statistical

technique. (See an appendix to this paper for a short explanation of FA)   We will next

further elaborate our rationale for combining DEA and FA (DEA/FA).
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Rationale for DEA/FA when evaluating educational units

In a university environment many different output-outputs are generally produced.

Often, however, decision-makers are interested in output-constructs (COs) not directly

observable. We contend that these COs constitute the critical elements of the

departmental policies and it is with respect to their performance in these constructs that

the unit's relative efficiency should be compared.  For example, an academic program

may be interested in comparing itself to its peers with respect to the quality of candidate

it produces, or the program selectivity of applicants rather than test scores and GPA..

Even when the program may have knowledge of the specific composition of the COs,

including the functional relationships between the COs and the inputs, as well as the

relative importance of the input-output mixes, this information is not generally known by

the analyst.  Furthermore, some departments may have only an ambiguous definition of

the COs. In an academic setting this is an unavoidable phenomenon when internal

departmental policies are not openly disclosed. Since departments are not necessarily

homogenous, these policies are likely to vary across academic departments, which further

limits the analyst's ability to construct the correct COs.

The approach generally followed is to use the directly observable outputs to draw

conclusions about the effectiveness or overall performance of the academic programs.

For example, test scores and GPA and GPA are generally used as proxy measures of

‘quality’. Gender, race, and income, are generally used as proxy measures of ‘diversity’

levels. With unrestricted weights, however, this approach can render an unrealistic

frontier because a DMU will seek to exploit any advantages in performance to position

itself on the frontier by relying on one or only a few of the input-output mixes. As

previously explained, the CCR-OO-CI model specialization seems to be a serious

concern. And, given that the departmental policies are heterogeneous, the difficulty of

imposing unbiased weight restrictions is much too great.

As we have previously argued, meaningfully selecting a reduced number of

observable outputs in order to increase discrimination among efficient DMUs can lead to

model misspecification. For example, consider the rule: if GPA plays a relevant role in all
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departmental policies, then it should be included; however, if only a few departments

consider GPA relevant to their decisions, then GPA may not be included.  In reality, the

analyst typically doesn’t know the departmental policies. He/she, therefore, can only

hope to draw adequate inferences from experience and prior research findings to reduce

the risk associated with the selection of variables. As an alternative, the analyst may

employ other methodologies or techniques that could assist him/her in the selection of an

appropriate set of variables, or the extraction of the underlying output structures from the

observable outputs. One such technique is factor analysis.

DEA/FA implies ranking the DMUs with respect to their overall performance on

some implicit constructed output (the extracted factors) rather than on individual outputs.

Each constructed output (CO) may be defined by several observable outputs.

Consequently, they must be appropriately and substantially interpreted. Although this can

pose some difficulties, it also can lead to more meaningful interpretation of the results.

For example, suppose that academic capability (AC) of graduate candidates, an CO

extracted using FA, is characterized by three observable outputs:  (a) EntMaScore, (b)

AppMaScore, and  (c) AppTotalScore (see Table 8C for explanation). If 80% of the

DMUs on average assign higher weight to this CO, then it is appropriate to infer that AC

plays a highly important role in the DMU’s policy. It is not appropriate, however, to infer

such a conclusion if 80% of the departments assign higher weight to ‘EntMaScore’ and

zero or very low weight to the other two outputs in order to maximize their efficiency

scores.

In this sense, an important advantage of DEA/FA for evaluating the efficiency of

academic departments is that the policy alternatives that can emerge would not only be

congruent with the departmental policies, but would also be more effective since they

will target input-CO mixes that are objectives of the departmental policies.

 Another advantage of DEA/FA is that it offers an effective way to curtail extreme

specialization that may be model-driven while still allowing “unconstrained” flexibility in

the choice of optimal pricing policy. Additionally, the advantages of using DEA are still

maintained. Such advantages include: (a) No a priori specification of the technology, (b)

The ability to test for returns to scale using DEA, and (c) Determining a reference set for

each inefficient DMUs, which can provide an inefficient DMU with important
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information for target setting and efficiency improvement. In this sense, DEA/FA can be

a valuable tool for improving the educational policy development process.

The data

We use two original data sets for 96 academic programs at the University of Iowa

(UI). The data was compiled by the UI Graduate College for the 1996 Profile of the UI

graduate programs. The first data set (DS1) includes 21 outputs with values specified in a

discrete domain L = [1, 2, ...10] and a single constant input. The second data set (DS2) is

comprised of 14 partial performance outputs (the ratios of the observed performance of

the University of Iowa unit over the averages observed by peer programs nationally) with

values defined in a continuous domain (0, ∝), and a single constant input. A special

characteristic of DS1 and DS2 is that { } { }12 DSDS f→ , where f is the relation

representing the method employed by the UI Graduate College to determine the decile

values for the outputs from the partial performances observed for each output. The items

shown in Table 1 are the outputs comprising the data sets. They are explained in Table

8C.

Data set DS1 Data set DS2
(decile) (ratios)

Indicator Output Indicator Output

EntGPA MinorityEnr EntMaScore
Inquiree Int'lStudentEnr EntTotalScore
AppMaScore FemaleEnr AppMaScore
AppTotalScore yrs/deg/PhD AppTotalScore
EntMaScore yrs/deg/Mast EntGPA
EntTotalScore NRC-decile Inquiree
Selectivity USNews-rank Selectivity
Yield Yield
IowaFellow IowaFellow
GradFellow GradFellow
Awd/Publ Exter$FTE
Cite/fac FemaleEnr
NRC%Supp MinorityEnr
Exter$FTE Int'lStudentEnr

                  Table 1.   List of outputs in data sets

Computational results using DS1 and DS2
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We performed a series of analyses, ranging from an analysis involving all 21

outputs in DS1 to analyses of different subsets of DS1.  Inclusion and exclusion of the

outputs was done arbitrarily, but a randomized procedure can also be employed. We

experimented with several subsets of outputs to evaluate the effect on the efficiency

rating of the programs of applications of the CCR-OO-CI model to the various subsets

with and without restrictions on the weights. Also to gauge the need, if any, for reducing

the number of output variables, and to try to establish consistency between the different

DEA results depending on the input-output mixes. Twenty-five DEA tests were

performed using with and without weight restrictions. One test was performed using DS2

Summary of twenty DEA applications performed with the data sets (DEA1-DEA19 and

DEA-DS2) are shown in Table 2. Complete details for some of the tests are shown in

Table 3 and Table 4.

When the CCR-OO DEA model was applied directly to multiple subsets of DS1

satisfying the condition kns 3/1)( ≤+ , k = 96 and s = 1, a sizable proportion of DMUs

became efficient even in cases where )1( n+ is significantly less that 1/7 of the sample size

(k). For example, in the case where all inputs and outputs in DS1 )221( =+ n  are used,

the efficiencies of all but four DMUs are 100% (test DEA1, Table 2, 3). Although other

applications of the model to subsets of DS1, ranging from 11 to 19 outputs (tests DEA2

through DEA19, Table 2), show less loss in efficiency discrimination among the DMUs,

over 60% of the DMUs are still ranked efficient.  In this case, the loss of discrimination

among the DMUs, can be explained by the characteristic of the data rather than by an

excessive number of input-output variables. This claim is supported when comparing the

results using both discrete and continuous output variables. For example, when DEA was

applied to the data set with fourteen continuous outputs in DS2, thirty-two of the DMUs

(33.4%) are deemed efficient (DEA-DS2, Table 2, 4). Whereas, when DEA is applied to

a subset of outputs in DS1, including the same 14 outputs of DS2 but with their values

specified in decile (a closed discrete interval ]10,...2,1[εijy ), 72 of the DMUs (76.1%)

are rated 100% efficient (DEA22, Table 4). This is almost double the number of DMUs

deemed efficient by DEA when using the continuous variables of DS2. These results are



12

Table 2.  Summary of DEA applications
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DEA22(14) discrete DEA-DS2(14) continuous

   Fig. 1.  DEA-DS2  and  DEA22 comparison

depicted in Figure 1 where it shows the tendency of applications of the model with

discrete output variables to crowd the frontier. That is, with discrete output variables the

distribution of the efficiency scores approaches a straight line from the 100% efficiency

level as )( ns + approaches k3/1 . This is clearly a significant drawback.

In all applications of the DEA model with unrestricted weights, independently of

the type of the output data, most or all DMUs select optimal weight policies ( Λ∈*λ )

that effectively ignore one or more outputs showing less advantages in order to maximize

their efficiency scores ( *φ ).  That is, setting *λν ∈i equal to zero for Yymk ∈ showing

 Summary of applications of DEA to subsets of DS1(DEA1-DEA22), DS1-F7 (DEA23) and DS2 
DEA test ID DEA1 DEA2 DEA3 DEA4 DEA5 DEA6 DEA7 DEA8 DEA9 DEA10 DEA11 
No. Indicators  21 16 15 15 13 13 13 12 12 12 11 
Efficient DMUs 88 68 80 76 75 67 72 70 62 61 61 
Average eficiency score 99.85 96.97 98.45 97.88 97.72 96.69 95.59 95.67 94.93 95.44 94.29 
Median efficiency score 1 1 1 1 1 1 1 1 1 1 1 
Minimum efficiency score 0.9438 0.8 66.26 0.8 66.26 0.7 0.4 0.4 0.5 0.6 0.4 

DEA test ID DEA12 DEA13 DEA14 DEA15 DEA16 DEA17 DEA18 DEA19 DEA20 DEA-DS2 DS2-F7 
No. Indicators  13 19 17 13 14 19(lb) 21(lb)         14(r)         7 (F) 14 7(F) 
Efficient DMUs 68 81 74 73 78 12 12 73 37 32 17 
Average  efficiency score 96.69 98.66 98.01 95.83 98.11 78.42 78.57 97.51 94.5 95.96 95.14 
Median efficiency score 1 1 1 1 1 80.52 80.18 1 0.98 96.44 95.49 
Minimum efficiency score 66.21 0.8 0.4 0.4 66.26 50.06 49.57 78.99 0.73 84.01 81.21 
(lb) lower bound proportional restriction on the weights of 0.025 
(r) The 14 indicator outputs included in DS2
(F) Extracted factors, data set DS1(DEA23), data set DS2 (DS2-
DEA) 
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less advantages. These policies, although technical efficient, violates the input-output mix

efficiency condition ( ),0&1 ** ∀= fλφ , which bounds extreme specialization that hide

low performance. They may also violate higher-order policies (i.e., the requirement that

all academic programs compete across the range of selected outputs). Thus, specialization

can lead to wrong policy decisions, such as wrong target setting. Extreme specialization

is a known difficulty of DEA. With the CCR-OO-CI model, however, this problem seems

more pervasive in particular across applications with discrete output data, even when

)( ns + << k3/1 .

In this work, we extend the view that specialization on subsets of outputs is

inconsistent with the University of Iowa’s objectives of  (a) developing graduate

programs of national distinction, and (b) assuring high quality and a diverse student body.

We argue that the outputs considered in the Profile of the programs were carefully

selected from the available data, and consequently no program, when assessing its own

efficiency, should be allowed to ignore completely these outputs which were considered

by the Graduate College to be relevant. That is, the graduate programs must compete to

some extent in each of the areas represented by the outputs. We can further argue that the

Graduate College intended that all outputs for an academic program must be included in

the assessment for that program. The requirement to that all of the outputs be weighted in

the DEA analysis such as to ensure compliance with the university’s policy, implies

restricting their weights to be greater than zero ( 0fλ ).

Imposing weight restrictions can help overcome some limitations of the CCR-OO

DEA model (see for example DEA17 and DEA18, Tables 2, 3), but it poses some new

dilemmas as well. This approach, when relevant, incorporate prior views or information

regarding the assessment of efficiency of DMUs, as well as consideration to the risk of

rendering the model infeasible. These requirements for prior information and knowledge

of DMUs policy limit the analyst's choice of the specific process for setting bounds. (For

a more thorough explication of weight restrictions the reader is referred to Allen et al.,

1997).

An alternative approach to imposing weight restrictions is to use factor analysis,

both for reduction of the inputs and outputs set via aggregation, and for specification of

discrete data in a continuous domain. This is the approach being follows in this work.
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DEA/FA to increase the utility of DEA for policy decision

In addition to using FA for extracting the underlying COs rather than selecting them, FA

is also being used in this work for the purpose of transforming the original data set from a

discrete domain into a continuous domain.

Table 3. Comparison of results attained with DEA1, DEA15, mean efficiency and
DEA24

DEA1 DEA18 DEA24 DEA1 DEA18 DEA24

DMU 21-O
21-O
lb 2.5%

Mean
Efficiency  7-COs DMU 21-O

21-O
lb 2.5%

Mean
Efficiency  7-COs

Art 1 0.7830 1 1 EdPsy/Meas/St 1 0.8943 0.9882 0.9749
Art History 1 0.9317 1 1 Higher Ed 1 0.6317 0.8773 0.9133
Dance 1 0.5745 0.9883 1 InstrDes/Tech 1 0.7040 0.7254 0.8227
Music 1 0.6695 0.9588 1 Science Ed 1 0.5268 0.7176 0.7830
Theatre Arts 1 0.9372 0.9857 1 Secondary Ed 1 0.6544 0.8955 0.8119
Af-Am Wld St 1 0.5105 1 0.9956 Social Foundtns 1 0.6432 0.8533 0.9118
American St 1 0.8914 1 1 Social Studies 1 0.5754 0.7921 0.7925
Asian Civiliz 1 0.6021 0.9765 0.9798 Special Ed 1 0.6709 0.9286 0.7958
Communicat St 1 1 1 1 Biomedical Eng 1 0.8646 1 1
Film/Video 1 0.9563 0.9941 1 Cheml/Bioch 1 0.5826 0.9954 0.9310
Comp Lit 1 0.9563 1 1 Civil/Environ 1 0.8346 0.9805 0.9785
English Lit/Lang 1 1 1 1 Elect/Cmptr 1 0.8816 0.9997 0.8813
Creative Writing 1 1 1 1 Industrial Eng 1 0.7446 0.9787 0.9794
Jour/MassComm 0.9699 0.8444 0.9242 0.9433 Mechanical Eng 1 0.8451 0.9784 0.9720
Lib/Info Sci 1 0.8653 1 0.9552 Accounting 0.9770 0.8488 0.8518 0.8440
Philosophy 0.9924 0.5455 0.9654 0.9320 Finance 1 0.6560 1 0.8779
Religion 1 0.6880 0.9749 1 Mgmt/Orgnztn 1 0.8823 1 0.9015
Classics 1 0.7833 1 1 Mgmt Sciences 0.9875 0.6991 0.9124 0.8566
French 0.9854 0.4947 0.9108 1 Marketing 1 0.7265 1 0.8477
German 1 0.8639 0.9856 1 Anat'y/Cell Bio 1 0.7308 1 0.9386
Russian 0.9438 0.7894 0.9052 0.8350 Biochemistry 1 0.9975 0.9910 0.9262
Spanish 1 0.5138 0.9844 0.9239 Biological Sci 1 1 0.9984 0.9830
Anthropology 1 0.7893 0.9873 1 Genetics 1 1 1 1
Economics 1 0.8887 0.9727 0.9956 Immunology 1 0.7908 1 0.9812
Geography 1 1 1 1 Microbiology 1 1 1 1
History 1 1 1 1 Molecular Biol 1 0.9000 1 1
Linguistics 1 0.6923 0.9807 0.8910 Neuroscience 1 0.8927 1 1
Spt/Hlt/Lei/Ph 1 0.5821 1 0.9808 Pathology 1 0.7615 0.9835 0.9087
Political Sci 1 0.8553 1 1 Pharmacology 1 0.8658 1 1
Psychology 1 1 1 1 Physiol/Biophys 1 1 1 1
Social Work 1 0.9443 0.9845 0.8788 Radiation Biol 1 0.6486 0.9864 0.9920
Sociology 1 0.8087 0.9733 0.8526 Dietetic Interns 1 0.7162 0.9765 0.8912
Thrd Wld Dvpt 1 0.6399 0.9647 0.9983 Hsp/Hlth Adm 1 0.8819 1 1
Urban/Reg Plng 1 0.9242 0.9941 0.9285 PhysicianAssist 1 0.8510 1 1
Chemistry 1 0.9129 0.9994 1 PhysiclTherapy 1 1 1 1
Exercise Sci 1 0.8377 0.9687 0.9640 PrvMed/EnvHl 1 0.7550 0.9904 0.9280
Geology 1 0.5741 1 0.8633 Nursing 1 0.6915 0.9827 0.9089
Physics/Astron 1 0.6076 0.9394 1 Pharmacy 1 0.7737 1 1
SpeechPath/Aud 1 1 1 0.9782 Oral Science 1 0.5407 0.9941 1
Appl. Math Sci 1 0.7327 1 0.9104 Dent Pub Hlth 1 0.8476 0.9961 0.8422
Computer Sci 1 0.7948 0.9504 0.8774 Endodontics 1 0.8578 0.9922 1
Mathematics 1 0.7023 0.9629 0.8968 Oral/MaxilSurg 1 0.7102 0.9898 0.9617
Statistics 1 0.5647 0.9908 0.9840 Operative Dent 1 0.8908 0.9816 0.8857
Actuarial Scienc 1 0.8191 0.9633 0.9192 Orthodontics 1 0.8997 1 1
QualMgmt/Prod 1 0.5481 0.9647 0.8724 Pediatric Dent 1 0.6881 1 0.9935
Counselor Ed 1 0.8713 0.9667 0.9109 Periodontology 1 0.7558 1 1
Erly Chld/Elem 1 0.5861 0.9028 0.8426 Prosthodontics 1 0.8963 1 0.9403
Ed Admin 1 0.5804 0.7412 0.7316 Stomatology 1 0.8305 0.9796 0.9217
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Using both DS1 and DS2, two standardized orthogonal data sets of 7 underlying

factors (DS1-F7, DS2-F7) were determined by employing FA. These factors are

presented in Tables 5 and 6.  They represent the underlying constructed outputs (COs)

targeted by the DMU’s policy, and are expressed as linear combinations of the original

data plus a random component (or unique factor). For each DMU a CO is defined as:
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is identical for all DMU.  This constant has been added to ensure positive values of the

COs. These CO scores form the new data sets DS1-F7 and DS2-F7, which are then used

in the DEA computations. (For conservation of space, these scores are not included here,

but can be furnished upon request). The modified CCR-OO DEA model is presented in

2M , where TCO is the transpose (n×F) matrix of COs and the rest are defined in 1M .

When 2M  was applied directly using the 7 COs in DS1-F7, 37 of the DMUs were
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        Table 4. Ranking of the programs attained with DEA-DS2, DEA23 and DS2-F7

If one considers Figure 2, it is clear that these two methods render consistent

results. We interpret jµ as a best approximation of the DMU’s efficiency for that data set.

Based upon the use of jµ , 38 of the DMUs are rated efficient. This number is very close

to 37 but considerable lower than 88, the number of DMUs with 100% efficiency when

DEA was applied to all inputs and outputs in DS1 (DEA1). It also represents less than

50% of the number of DMUs deemed efficient in each of the remaining 21 applications

DEA23(14r) DEA-DS2 DS2-F7 DEA23(14r) DEA-DS2 DS2-F7

DMU Discrete Continuous  COs DMU Discrete Continuous  COs
Art             1 0.9204 0.8685 EdPsy/Meas/St   1 0.8954 0.9620
Art History     1 0.9158 0.9428 Higher Ed       0.9138 0.9358 0.9210
Dance           1 0.9141 0.8121 InstrDes/Tech   0.8000 0.9953 0.9487
Music           0.8466 0.8401 0.9426 Science Ed      0.8000 0.9128 0.8951
Theatre Arts    1 0.9320 0.9137 Secondary Ed    0.9700 0.9137 0.9381
Af-Am Wld St    1 1 0.8966 Social Foundtns 0.9057 0.9205 0.8609
American St     1 1 0.9301 Social Studies  0.9000 0.9149 0.9090
Asian Civiliz   1 0.8528 0.8818 Special Ed      1 0.9258 0.9359
Communicat St   1 1 0.9836 Biomedical Eng  1 0.9442 0.9394
Film/Video      1 1 0.9545 Cheml/Bioch     1 0.9803 0.9573
Comp Lit        1 1 0.9446 Civil/Environ   0.8623 0.9635 1
English Lit/Lang 1 0.9778 0.9860 Elect/Cmptr     1 1 0.9377
Creative Writing 1 1 0.9507 Industrial Eng  0.9857 0.9436 0.9583
Jour/MassComm   0.9668 0.9273 0.9281 Mechanical Eng  0.8333 0.9918 0.9334
Lib/Info Sci    1 0.9653 0.9732 Accounting      0.8623 0.9626 1
Philosophy      0.9362 0.9217 0.9391 Finance         1 0.9493 1
Religion        1 0.9502 1 Mgmt/Orgnztn    1 0.9149 1
Classics        1 1 1 Mgmt Sciences   0.9288 0.9143 0.9534
French          0.9115 0.8846 0.9018 Marketing       1 1 1
German          1 0.9014 0.9532 Anat'y/Cell Bio 1 0.9816 0.9572
Russian         0.9416 0.8778 0.8965 Biochemistry    1 0.9053 1
Spanish         1 1 0.9594 Biological Sci  1 1 0.9849
Anthropology    1 0.9811 0.9637 Genetics        1 0.9918 0.9730
Economics       0.9010 0.9214 0.9548 Immunology      1 0.9864 1
Geography       1 0.9723 0.9551 Microbiology    1 0.9734 0.9681
History         1 0.9589 0.9604 Molecular Biol  1 1 0.9828
Linguistics     0.9714 0.9628 0.9334 Neuroscience    1 1 0.9810
Spt/Hlt/Lei/Ph  1 0.9483 0.8719 Pathology       1 1 0.9426
Political Sci   1 0.9256 0.9582 Pharmacology    1 1 0.9714
Psychology      1 0.9485 1 Physiol/Biophys 1 1 1
Social Work     1 1 0.9491 Radiation Biol  1 1 0.9215
Sociology       0.9000 0.9059 0.9456 Dietetic Interns 1 1 0.9496
Thrd Wld Dvpt   1 0.9814 0.9005 Hsp/Hlth Adm    1 0.9612 0.9563
Urban/Reg Plng  1 0.9151 0.9579 PhysicianAssist 1 1 0.9835
Chemistry       1 0.9254 0.9656 PhysiclTherapy  1 0.9693 0.9622
Exercise Sci    1 1 0.9316 PrvMed/EnvHl    1 1 0.9492
Geology         1 0.8915 0.9245 Nursing         1 0.9377 0.9116
Physics/Astron  1 0.9119 0.9689 Pharmacy        1 1 1
SpeechPath/Aud  1 1 1 Oral Science    1 1 0.9380
Appl. Math Sci  1 1 0.9855 Dent Pub Hlth   1 0.9438 0.8348
Computer Sci    0.9310 1 0.9802 Endodontics     1 0.9251 0.9474
Mathematics     0.7899 0.9974 0.9476 Oral/MaxilSurg  1 1 1
Statistics      1 0.9999 0.9492 Operative Dent  1 0.9567 0.9864
Actuarial Scienc 1 1 1 Orthodontics    1 1 1
QualMgmt/Prod   1 1 0.9715 Pediatric Dent  1 0.9348 0.9564
Counselor Ed    1 0.9234 0.9623 Periodontology  1 1 0.9747
Erly Chld/Elem  0.9516 1 0.9234 Prosthodontics  1 0.9350 0.9497
Ed Admin        0.8000 0.9461 0.8857 Stomatology     1 0.9391 1
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of the model to subsets of DS1. Furthermore, 63.2% of the DMUs rated efficient based

upon jµ  are also efficient with the DEA/FA method.  From this we infer that the

efficiency frontiers determined by applications without weight restrictions were grossly

populated with poor performers and consequently were unrealistic.
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0.7
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0.9

1
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1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Efficiency w/7 COs
Mean_efficiency

Fig. 2.   Mean efficiency DEA24 comparison

Although the mean efficiency method and the DEA/FA method produce similar

results, the former has some drawbacks: (1) computational cost increases with the

number of runs and the sample size; (2) it is not possible to take advantage of the policy-

planning features of DEA such as benchmarking, target setting, and output and input

reduction because the slacks and reference sets cannot be computed; and (3) an optimal

pricing policy is not easily computable.

When DEA was applied to DS2-F7, seventeen DMUs were deemed efficient,

which represents a decrease of about 50% relative to when the model was applied to all

inputs and outputs in DS2 (test DS2-DEA). These results are displayed in Table 4

Consider Table 4, where it shows that using the COs produce a significantly different set

of efficient DMUs than does using the continuous data set (DS2) directly. Table 4 also

shows that only eight programs (Classis, SpeechPath/Aud, Actuarial Science, Marketing,

Physiol/Biophys, Pharmacy, Oral/MaxilSurg and Orthodontics) remain efficient  across

the applications with discrete (DEA22) and continuous (DS2-DEA) data and COs scores
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(DS2-F7). Since the average and median efficiency in DS2-DEA and DS2-F are not

significantly different (see Table 2), the robustness of the model is not disputable.

Original variables

Candidate 
Academic 
Capability     
F1 

Faculty 
quality 
productivity    
F2

University 
support       
F3

Information 
cost/effect    
F4

Gender mix   
F5

Visibility    
F6 

Ethnic/  
racial mix      
F7        

EntMaScore 0.878
EntTotalScore 0.856
AppMaScore 0.796
AppTotalScore 0.876
EntGPA
NRC%Supp 0.790
NRC-Faculty 0.774
NRC-Awd/Publ 0.729
NRC-Cite/fac 0.658
Inquiree 0.584
Selectivity 0.551
Yield -0.602
IowaFellow 0.581
GradFellow 0.758
Exter$FTE -0.560
yrs/deg-PhD -0.659 0.475
yrs/deg-Master 0.813
USNews-rank -0.826
FemaleEnr 0.748
MinorityEnr 0.884
Int'lStudentEnr 0.651

Table 5.  Factors (COs) extracted from DS1 (DS1-F7)

Candidate 
Academic 
Capability

University 
support

Admission  
boundaries

Potential 
Demand

Selectivity 
(quality)

Gender 
mix

Int'l 
diversity

Original variables F1 F2 F3 F4 F5 F6 F7
EntMaScore 0.954
EntTotalScore 0.659 -0.543
AppMaScore 0.946
AppTotalScore 0.936
EntGPA 0.641
Inquiree 0.877
Selectivity 0.846
Yield 0.769
IowaFellow 0.949
GradFellow 0.947
Exter$FTE -0.727
FemaleEnr 0.767
MinorityEnr -0.798
Int'lStudentEnr 0.985

                      Table 6.  Factors (COs) extracted from DS2 (DS2-F7)
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An examination of the pricing policies for DS2-DEA and DS2-F7 (Table 7A) also

reveals some consistencies. The weight of an output reflects the relative importance that a

DMUs assigns to that output. Table 7A shows the average, median and maximum

weights that are assigned to each output in these applications of DEA. We use these

values instead for our assessment. In DS2-DEA the outputs contributing most to the

efficiency scores based upon their average, median and maximum weighted values are

 “AppTotalScore” (39.66%),  “AppMaScore” (17.54%), “EntTotalScore” (12.29%), and

“GPA” (9.76%). These policies are similar to those in DS2-F7.  In this case,  the

“Candidate academic capability” CO, which is determined essentially by

“AppMaScore”, “AppTotalScore” and “EntMaScore”, has an average weight of 30.38%,

and is assigned a positive weight by 91% of DMUs.  Likewise, the “internal funding’

CO, which is essentially determined by “IowaFellow” and “GradFellow”, has an average

weighted value of 44.66% and is assigned a positive weight by most (92%) of the DMUs.

The constituent outputs, “IowaFellow” and “GradFellow”, however, don’t receive high

weights in DS2-DEA. ‘Selectivity’ formed by “Selectivity” and “Yield” is another

relatively important COs in DS2-F7, but only “Selectivity” seems to be somewhat

important in DS2-DEA.

In summary, ‘Candidate academic capability’, ‘Internal funding’, and

‘Selectivity’ are important COs for most academic departments. Their components (the

original outputs) are not all given congruent importance. We believe that this apparent

lack of congruency in the policies between the two applications of DEA, rather than

weakening our claim about the existence of underlying COs which are targeted by

departmental policies, in fact strengthens it. That is because in DS2-DEA the DMUs are

able to exploit variations in performance in the individual outputs by specializing in the

most advantageous outputs, whereas in DS2-F7 they are unable to apply a similar

strategy. Choosing a CO implies including all of its component outputs, some of which

may not show a DMU's performance to best advantage. In other words, the reduced

dimension of the output space restricts the feasible region and as such it also precludes

extreme specialization, which reduces the number of DMUs that, although ratio efficient,

are mix-inefficient. Controlling for crowdedness in this manner can improve policy

effectiveness by diminishing the risk of imitating a poor role model. Furthermore, the



20

pricing policies observed are congruent with the decision-making process of the

academic program because they are comparing each other with respect to COs targeted

by their internal policies.

Since the extracted factors do not explain 100% of the variance, it is wise to use

the DEA results cautiously. However, if the unexplained variance can be attributed to

errors, then we can be more confident with these results. The analyst will have to form

some theories about the data and the underlying factors in order to explain the results.

Exploratory data analysis (EDA) could prove useful for this purpose.

Conclusions

Although the classification of the DMUs as efficient or inefficient using the CCR

output-oriented model with a single constant input may not be meaningless, this model

should be employed with care.  The efficiency frontier thus determined could be

significantly distorted, both in the case of discrete-valued as well as continuous-valued

data sets. Regardless of the type of data, the need for discriminatory power of the model

imposes strict limitations on the number of input and output variables relative to sample

size, which must be significantly below the more generally accepted upper bound of 1/3

of the DMUs. Even with a very small number of variables, extreme specialization is the

most likely policy, which raises a serious concern with regard to the adequacy of the

efficiency frontier. A crowded frontier likely includes poor performers masquerading as

efficient. This poses consequences for the development of improvement policies, which

might encourage an inefficient DMU to imitate poor performers posing as role models.

These limitations of the CCR output-oriented model can be improved by combining DEA

with factor analysis.

 DEA/FA effectively constrains extreme specialization behavior while still

allowing unconstrained flexibility on the choice of optimal weights. The result is a more

realistic or adequate frontier. Specialization is also more meaningful because it is based

on the output constructs maximized by the DMUs rather than on individual components

of the constructs. The observed pricing policies are congruent with the decision-making

process of the academic units because they are making comparisons with each other with
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respect to their relevant output constructs. Employing DEA/FA, the advantages of using

DEA are still maintained. For example, it is widely accepted that DEA can be used to test

for returns to scale. DEA also determines a reference set for each inefficient DMUs,

which can provides the inefficient DMUs with important information for the purpose of

target setting and efficiency improvement. In this sense, DEA/FA can be a valuable tool

for improving the educational policy development process. These advantages of DEA

cannot be enjoyed when using FA or principal component analysis alone to produce an

alternative ranking of the DMUs.

.
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Appendix A

Table 7A

DEA22(14) DS2-DEA
Average 
Weight

Median 
Weight

Assigned 
Weight = 0 Max Weight

Average 
Weight

Median 
Weight

Assigned 
Weight = 0 Max Weight

EntMaScore 0.0325 0.0000 72% 1.0000 0.0325 0.0000 67% 0.7182
EntTotalScore 0.0665 0.0000 67% 1.0000 0.1229 0.0000 70% 0.9701
AppMaScore 0.0268 0.0000 61% 0.4353 0.1753 0.0300 42% 0.9423
AppTotalScore 0.0382 0.0000 70% 0.4082 0.3966 0.3270 41% 0.9968
EntGPA 0.5278 0.0000 53% 0.0477 0.0976 0.0000 66% 0.9430
Inquiree 0.0826 0.0060 25% 0.8079 0.0173 0.0000 47% 0.7150
Selectivity 0.0291 0.0000 76% 0.7748 0.0157 0.0000 68% 0.0307
Yield 0.1877 0.0159 28% 1.0000 0.0243 0.0050 41% 0.6159
Fellowship 0.0300 0.0000 47% 1.0000 0.0119 0.0000 63% 0.5708
Grand 0.0534 0.0110 36% 0.3767 0.0041 0.0000 89% 0.1320
Exter$FTE 0.0670 0.0000 18% 0.6926 0.0169 0.0000 38% 0.9446
FemaleEnr 0.1088 0.0570 23% 0.7279 0.0439 0.0000 55% 0.8032
MinorityEnr 0.0764 0.0070 44% 0.5929 0.0306 0.0000 51% 0.9597
Int'lStudentEnr 0.1483 0.0440 32% 0.8105 0.0104 0.0008 36% 0.9340

No. efficient DMUs 73 32
Average Efficiency 0.9751 0.9596
Min Efficiency 0.7899 0.8401

DS2-F7(Vx) DS2-F6(Vx)

Factor 1 0.3038 0.2956 9% 0.7471 0.0373 0.0161 16% 0.4385
Factor 2 0.4466 0.0366 8% 0.9411 0.6581 0.6525 6% 0.9577
Factor 3 0.0118 0.0000 72% 0.7455 0.2294 0.2039 31% 0.9540
Factor 4 0.0160 0.0000 54% 0.1385 0.0353 0.0000 55% 0.3892
Factor 5 0.1030 0.0050 42% 0.8095 0.0158 0.0000 91% 0.4839
Factor 6 0.0412 0.0047 50% 0.2862 0.0242 0.0179 17% 0.4116
Factor 7 0.0775 0.0262 42% 1.0000

No. efficient DMUs 17 11
Average Efficiency 0.9514 0.9175
Min Efficiency 0.8121 0.8005
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Appendix B:  Factor Analysis using Principal Component Analysis

Factor analysis (FA) is a statistical technique used to identify a relatively small

number of factors that can be used to represent relationships among sets of many

interrelated variables. For example, variables such as scores in a battery of college entrant

tests may be expressed as a linear combination of factors that represents the innate

academic abilities of the examinees, such as verbal skills, mathematical aptitude, and

comprehension speed. These underlying dimensions or constructs have to be identified.

The basic assumption of factor analysis is that underlying dimensions, or factors, can be

used to explain complex phenomena. Observed correlation between the observable

variables (herein outputs) result from their sharing these underlying factors. For example,

correlations between GRE test scores might be attributed to such shared factors as

general intelligence, abstract reasoning skill, and reading comprehension. The goal of

factor analysis is to identify the not-directly-observable factors based on a set of

observable outputs.  In the model,

EYUF +=

Y is the original (k x n) data matrix, albeit in standardized form, U is the (n x n) matrix of

factor coefficients iju , which are to be determined, E denotes the matrix of scores of  the

unique factors (i.e., noise) and F denotes the matrix of scores of the common factors

shared by the observable data.

Alternatively, each observable outputs can be expressed in term of some common

factors and unique factors, EAFY +′= , where A′ is the matrix of coefficients, and the

matrices Y and E  are as defined above. Two main assumptions are : (1) iE  are mutually

uncorrelated, which implies that )1/( −′ nEE is a diagonal matrix. (2) Unique and

common factors are uncorrelated, which implies that FE ′ is a null matrix.



25

FA can be considered a technique of latent structure analysis or recognition of

hidden structure in the material by the statistical analysis. The goal is to reduce the

dimension of the space and the complexity of the original observable structure. This

structure is revealed by clustering patterns of the data shown in the correlation matrix.

Two forms of factor analysis are principal component analysis (PCA) and principal factor

analysis (PFA). These two have different underlying models, but the method for the

calculation of the factor solution is the same, namely the principal axis method or

examination of the eigenstructure, according to which the eigenvalue of the first factor

extracts a maximum of variance from the variables, the second factor extracts a

maximum from the remaining variance and is orthogonal to the first factor, and each

successive factor extracts a maximum from the remaining variance and is orthogonal to

all other factors. In PCA, ACY ′= , the eigenvalues explain proportions of the total

variance, whereas in PFA, EAFY +′= , the eigenvalues represent only the estimated

common variances.

In PCA the model specifies the components as linear combinations of the

observable outputs... Let ijy  be the individual indicator measures i, ),....,( nii = , for each

DMUj ),....,( kij = . The k × n data matrix Y is the matrix of original indicator measures:

nxknyyyY )( ,...2,1=

with each row represents the n individual outputs (or output-input ratios where the input

is a unique constant value) ijy  for each DMUs and each column represents a specific

indicator for all DMUs. (We should note that with multiple input levels, Y is an (n×m)

matrix where m is the number of input levels.)

The independent latent structures (principal components) or measures to be

extracted are linear combinations of z1,.....,zn , where the zn are standardized yn. In matrix

form this latent structure is:
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nxnnxknxk UxZC =   or  ZUC =

where C  is the matrix of component scores, Z  is the matrix of original indicator

measures , albeit in standardized measures, and U  is the matrix of factor or component

coefficients iju  .  Then ∑
=

=
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 represents the components as linear combinations

of the standardized indicator measures, where i = 1,....,n,   p= i,....,n,  and  j is equal to

the number of observations for each component. The j
pC are defined under two restrictive

conditions: (1) that they are perpendicular or uncorrelated (orthogonality), and (2) that
222 ,....,

21 nCCC σσσ >>> , where pC p
λσ =2 , the eigenvalues , and  p = 1,....,n.  The second

condition implies that the first component has to extract as much variance as possible

from the original outputs, the second component as much as possible from the remaining

variance, and so forth.. The number of components retained  may satisfy the condition

that the cumulative variance extracted be greater than some θ , %)100%50.,.( ≤θpei , or

the condition that the eigenvalue be greater than 1, 1≥pλ  (Kaiser, 1959). [In addition to

the Kaiser criterion the Scree test developed by Cattel (1966) can also be used. This

criterion implies plotting the eigenvalues against the factors or components and retaining

the number with values greater or equal to the value of the factor at the kink.] The

retained components, therefore, imply a reduced q dimensional space. The interpretation

is that the p-q components not retained are redundant. Their marginal contributions to the

cumulative variance are small. Additionally, the retained components will have to be

given an appropriate substantial interpretation indicating the decision or policy variable

that they represent. The resulting matrix of component scores C can be used as the new

data set for the DEA analysis.

The procedures for determining the latent structures is as follows:

First: Calculate the sample mean vector and covariance matrix:
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determine Z, the original (k×n) data matrix, albeit in standardized measures.

Second: Determine the eigenstructure of '
)1(

'
UVU

n
ZZ

R =
−

= , the correlation

matrix with (n-1) degrees of freedom [R is a square symmetric matrix. Finding the

eigenstructure of Z amounts to the same as finding the eigenstructure of R], where U  and

V are the (n × n) matrices of eigenvectors and eigenvalues of R , respectively. The matrix

V is also the matrix of eigenvalues of  Z’Z divided by n-1. The eigenstructure is then

determined from the systems of equation 0)( =− uIR λ , where I is the n×n identity

matrix and u is a vector  (or matrix) of factor score coefficients. Determine first R then

solve the characteristic equation 0=− IR λ . The characteristic equation yields the

eigenvalues iλ  (i = 1,....n) of R satisfying the conditions nλλλ ≥≥≥ ....21  and n
n

i
i =∑

=1

λ ,

which is the sum of variances of the standardized variables zij (i = 1,....n) or the sum of

elements on the principal diagonal of R. Substituting the iλ into the equation

0)( =− uIR λ  yields the eigenvectors or characteristic vectors iu  (i=1,....n) which in turn

determine the principal components. These vectors are not unique because the system of

equations are not linearly independent. The matrix:

)(21 ],....,[ nxnnuuuU =

that is formed with the eigenvectors is orthogonal and rotates the original n dimensional

axes around the origin toward the new component axes. [The iC (i=1,....n) components

are orthogonal and their means are equal to zero.] The matrix of standardized component

scores 2/1−= ZUVC can now be obtained, where 2/1−V  is the (n × n) diagonal matrix of

eigenvalues, and 2/1−UV  is the matrix of factor score coefficient or factor structure [ ]ijm .

This matrix contains the correlation between components and variables. The square of a

correlation coefficient is the proportion of explained variance (the proportion of the

variance of the original variables explained by the component). The sum of squared
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coefficients in a row of[ ]ijm  is the communality, which is equal to the variance of the

standardized original variable (1) minus the proportion of this variance explained by an

underlying unique factor (i.e. error or noise factor).

Third: Apply the criterion for reduction of the component or factor space. For

example the Kaiser (1959) criterion retains only the components for which the

eigenvalues is greater than 1. Another criterion is that of Cattel (1966), which consists of

plotting the eigenvalues, and retaining the components determined by the kink (elbow) in

the curve. The Bartlett (1950) inferential approach can also be employed.

The components not retained are the redundant components. The measure of redundancy

of a component can also be calculated by partitioning 'UVU  as iii uu 'λ  (i=1,....n), where

iλ denotes the eigenvalues and iu  denotes the eigenvectors, and reproducing the matrix R

step by step. The process ends when the reproduced )ˆˆ(
ˆ

nxnR  matches )( nxnR  reasonably

well, where nn ≤ˆ .

Fourth: Determine 2/1ˆˆˆ −= VUZC , the extracted )ˆ( nxk matrix of standardized

component scores, and  [ ]ijm̂ , the extracted )ˆ( nxn matrix of factor coefficients, where n̂

is the number of retained components.  The extracted matrix of standardized component

scores forms a new data set, which can be substituted for the original data set for

comparison or improvement of results. The new data set effectively reduces the

dimension of the original data set and the extracted components or factors form an

orthogonal basis of a vector space. These extracted components will then have to be

given an appropriate interpretation. Because PCA does not always offer the most

elucidating solution. to aid interpretation, it is better to rotate the component space to a

new simpler space, which results in better interpretation. Varimax, Equimax or

Quartimax rotation methods can be used.
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Appendix C

Table 8C
Indicator outputs explained

EntGPA Grade Point Average of entering graduate students
Inquiree % in national discipline pool sending GRE scores to UI
AppMaScore Applicant  most applicable GRE score
AppTotalScore Applicant total GRE score
EntMaScore Entrant most applicable GRE score
EntTotalScore Entrant total GRE score
Selectivity Ratio of applicants to admitted students
Yield Ratio of admitted to entering students
IowaFellow Iowa fellowship awarded per entering students
GradFellow Graduate Fellowship awarded per entering student
Awd/Publ NRC award publication
Cite/fac Citation/FTE faculty
NRC%Supp % faculty with support relative to discipline avg (NRC)
Exter$FTE External funding awarded per FTE
MinorityEnr % minority continuous enrollment
Int'lStudentEnr % int'l students continuous enrollment
FemaleEnr % female continuous enrollment
yrs/deg/PhD Years to degree (PhD)
yrs/deg/Mast Years to degree (Master Degree)
NRC-decile NRC ranking of faculty 
USNews-rank USNews ranking of the program


