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Conjugate functions have played an important role in the theory of convex

programming.  (For example, see [4].)  An analogous role in quasi-convex programming

is played by quasi-conjugate functions.  Conjugates relate to epigraph supports, whereas

quasi-conjugates relate to level set supports and barriers; conjugate functions provide a

basis for Lagrangian duality, whereas quasi-conjugate functions provide a basis for

surrogate duality.  In this paper, we shall briefly survey the existing theory of quasi-

conjugacy and surrogate duality as developed by Greenberg and Pierskalla ([2] and [3])

as it relates to nonconvex programming, interpreting it geometrically, and shall then add

several extensions to this theory.

QUASI-CONJUGATES

A hyperplane in En is a set, with parameters u∈En, u≠0, and c∈E1, of the form

( ){ }: ,c n
uH x E u x c= ∈ = (1.1)

where (u,x) and ux will interchangeably denote the inner product of u and x.  The

parameter u determines the orientation of c
uH  and may be referred to as its direction

vector.  In particular, the hyperplane with direction vector u passing through the fixed

point x0 is 
0ux

uH .  (See Figure 1.)

A hyperplane c
uH determines two closed halfspaces, one of which we will denote by

( ){ }: ,c n
u x E u x c= ∈ ≥H (1.2)

If f is a function from En into the (extended) real line, [ ]1 ,E = −∞ +∞ , i.e., a

functional, then we denote its c-level-sets by

( ){ }:n
cL f x E f x c= ∈ ≤ (1.3)

and

( ){ }:o n
cL f x E f x c= ∈ < (1.4)

Figure 2 denotes cL f for a case in which n=1.
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Our interest in level sets results chiefly from the fact that quasi-convex functions may

be defined to be functions all of whose level sets are convex.

For many functions, cl o
c cL f L f= (the closure of 0

cL f ), but such is not always the

case, as demonstrated by Figure 3.  Here o
c cL f L f⊂ , but it is neither the case that

cl o
c cL f L f= , nor even that cl o

c cL f L f⊂ .  Note that f is not lower semi-continuous, nor

explicitly quasi-convex (because of the "flat" spot in the graph).

Figure 4 depicts a c-level-set of a function defined on E2.  The boundaries of level

sets are simply the contour curves of the function.  Given a point x∈En, a level set of

particular interest is ( )f xL f , depicted in Figures 5 a&b. In Figure 5b we note that x need

not be a boundary point of ( )f xL f .

We next define the z-quasi-conjugate function 1: n
zf E E+ → where z∈E1 and

( ) ( ) ( ){ }inf : ,zf u z f x u x z+ = − ≥ (1.5)

Note that it is helpful to consider zf + as a function of direction vectors, i.e.,

( ) ( ){ }inf : .z
z uf u z f x x+ = − ∈H (1.6)

If f is a quasi-convex function, as in Figure 6, and z
uH is a supporting hyperplane for

some level set cL f , then ( )zf u z c+ = − , provided that the global minimum point

x*=argmin ( )f x  does not lie in z
uH  (in which case ( ) ( )*zf u z f x+ = − ).

One important property which should be noted is that zf + is quasi-convex (without

assuming any properties of f ).

We now consider the second z-quasi-conjugate ( ) ( )z z
f x

++ , defined in the obvious

way as the z-quasi-conjugate of zf + , and define the normalized second quasi-conjugate

of  f  as

( ) ( ) ( )
1

sup z zz E
f x f x

+++ +

∈
= (1.7)

Example:

Let ( ) ( )2 2expxf x e x−= − = − − , for x∈E1 (see Figure 7a).  Note that f is  quasi-convex.

Then
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( ) ( ){ }inf :zf u z f x ux z+ = − ≥

( ){ }2inf exp :z x ux z= − − − ≥

( )2

2exp  if 0 and 0

 if z>0 and 0

1 if z 0

zz z u
u

u

z

 + − > ≠
= −∞ =
 + ≤

The second z-quasi-conjugate is

( ) ( ){ }inf :z zZ
f z f u ux z

++ += − ≥

( )

( ){ }
( ){ }

2

2

2

2

1  if  z 0

 if 0 & 0

inf exp : 0  if 0 & 0

inf exp :  if 0 & 0

z z

z z x

z zz z z xuu

z zz z x z xuu

− + ≤
 − ∞ > =
=  − + − ≤ > <



− + − ≥ > <

( )2

1  if 0

 if 0 & 0

exp  if 0 & 0

z

z x

x x x

− ≤= −∞ > =
− − > ≠

And hence

( ) ( ) ( )sup z z
f x f x

+++ +=

{ }
( ){ }2

Max 1,  if 0

Max 1, exp  if 0

x

x x

− −∞ == 
− − − ≠

( )2exp x= − −

( )f x=

(See Figure 7b.)

The function f ++ has several important properties:

PROPERTY (i):  (see [2]):  f ++ is quasi-convex, and

( ) ( ) ( )f x f x f x++ ∨ ∨≥ ≥ ,

where f ∨∨  is the second (convex) conjugate.  That is, f ++  provides a quasi-

convex approximation to f , from below, which is better than the convex

approximation provided by f ∨∨ .
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PROPERTY (ii)  (see [2]):

( ) ( ) ( ) ( ){ }
w

sup  inf   : , ,
u

f x f w u w u x++ = ≥ (1.8)

( ){ }sup  inf  : ux
uwu

f w w= ∈H

This relaxation is easier to interpret geometrically than the definition of f ++ .  In

Figure 8, we see depicted the three hyperplanes through x with the direction vectors u2,

u1, and u0, together with the points

µ ( ){ }argmin :
i

i

i
u x
u

w
w f w w H= ∈

It is clear that for the function depicted, rotating a hyperplane clockwise from 
2

2
u x
u

H

through 
1

1
u x
u

H  to 
0

0
u x
u

H  (which supports the contour curve through x of the function f )

produces a maximizing sequence µ{ }i
w converging to x, and ( ) ( )f x f x++ = .

Figure 9 depicts a function which (unlike that in Figure 8) is not quasi-convex.

Again, rotating a hyperplane clockwise from 
2

2
u x
u

H to 
0

0
u x
u

H  produces a maximizing

sequence µ{ }i
w , which does not, however, converge to x.  Moreover,

( ) ( ) ( ) ( )0 0* .f w f w f x f x++= = <

Furthermore, it is shown in [2] that if f is an isotonic function, i.e.,

( ) ( ) ,w v f w f v≥ ⇒ ≥

the optimal u in equation (1.8) has the property nu E+∈ , i.e., u≥0.  Hence, if f is isotonic,

( ) ( ){ }supinf :
wu c

f x f w uw ux++

≥
= ≥ (1.9)

PROPERTY (iii):  If cL f  is compact for all c, then

conv c cL f L f++ =

for all c (cf. [3].)  More generally, for all c,

cl conv o
c cL f L f++ ⊂

and

conv .c cL f L f++ ⊃ (1.10)



Quasi-conjugacy & Surrogate Duality 5

Proof:  The proof of (1.10) is a trivial result of property (i). Let cl conv cx L f∉ .  Then x

may be separated from  cl conv cL f , i.e., there is a y such that xy wy>  for all

cl conv cw L f∈ .  By Property (ii),

( ) ( ){ }supinf :
wu

f x f w wu xu++ = ≥

and so, in particular,

( )f x++ ≥ Κ

where

( ){ }inf : .
w

K f w wy xy= ≥

Now, given δ >0, there must exist wδ such that w y xyδ ≥ and ( )f w Kδ δ< + .  But

w y xyδ ≥ implies that conv cw L fδ ∉  and hence cw L fδ ∉ , i.e., ( )f w cδ > .  Therefore,

we have, for all 0δ > ,

( ) ( )c f w K f xδ δ δ++< < + ≤ +

or simply ( )c f xδ ++− <  for all 0δ > .  Therefore, ( )c f x++≤  and so o
cx L f ++∉ ,

proving that

cl conv .o
c cL f L f++ ⊂

We are now in a position to introduce the concept of surrogate mathematical programming.
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SURROGATE MATHEMATICAL PROGRAMMING

Consider the family of mathematical programs obtained by parameterizing the

constraint right-hand-side vector and whose optimal value F:Em is defined by

( ) ( ) ( ){ }inf : ,F b f x g x b x S= ≥ ∈ (2.1)

where 1:f S E→ , nS E⊂ , : mg S E→ , and mb E∈ .  (If the problem is infeasible, then

we define ( )F b = +∞ .)

Note that if 1 2b b≥ , then

( ){ } ( ){ }1 2: , : , ,x g x b x S x g x b x S≥ ∈ ⊂ ≥ ∈

and so

( ){ } ( ){ }1 2inf : , inf : , ,x g x b x S x g x b x S≥ ∈ ≥ ≥ ∈

i.e., ( ) ( )1 2F b F b≥ .  Thus F is isotonic.

A surrogate problem, parameterized by b and the surrogate multiplier vector mu E+∈ ,

is defined to be that of computing

( ) ( ) ( ){ }, inf : , .S u b f x ug x ub x S= ≥ ∈ (2.2)

This is equivalent to

( ) ( ){ }, inf : , .S u b F u ub x Sβ β= ≥ ∈ (2.3)

We further define the surrogate dual problem to be that of computing

$ ( ) ( )sup ,
u

S b S b u
≥ 0

=

( ) ( ){ }supinf : ,
xu

f x ug x ub x S
≥ 0

= ≥ ∈ (2.4)

( ){ }supinf : .
u

F u ubβ β
≥ 0

= ≥

Without affecting the supremum we may perform the outer optimization over the subset

of surrogate multipliers

1

: 1
m

m
i

i

u E u+
=

 = ∈ = 
 

∑U

which is both convex and compact.  Any direction in mE+  has a representative vector in

U .  We may then write
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$ ( ) ( )sup , .
u

S b S b u
∈

=
U

Comparison of (2.4) with equation (1.9) shows that, since F is isotonic,

$ ( ) ( ).S b F b++= (2.5)

We know that ( ) ( )F b F b++ ≤ , and we are naturally interested in knowing under what

conditions equality holds.  That is, when does there exist a u ≥ 0  such that solving the

surrogate problem ( ),S b u  solves our original problem, and ( ) ( ),S u b F b= ?  If such a u

does not exist, b  is said to lie in a surrogate gap.  The point 0b  is in such a gap in Figure

11, where

( ) ( ) ( )1 0 .F b F b F b++ = <

This figure also illustrates one of the results stated in [2].  Suppose, for some *u ≥ 0 , 0b

is a convex combination of points in the set ( ){ }0argmin :F u ubβ β ≥ .  Then either

some solution x of the surrogate problem ( )0 , *S b u  is a solution of ( )0F b , or else 0b  is

in a surrogate gap.

The quasi-subgradient, to be introduced next, will help to characterize the surrogate

gaps of a mathematical program.
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QUASI-SUBGRADIENTS

The conjugate inequality [4], namely,

( ) ( ) ( ), ,x y f x f y∨≤ +

with equality if and only if ( )y f x∈∂ , where ( )f x∂  is the subgradient set of f  at the

point x, and f ∨  is the convex conjugate of the function f has an analogue in quasi-

conjugate theory.  It is easy to derive the result

( ) ( ) ( ), uxu x f x f u+≤ + (3.1)

and we shall define ( )f x+∂ , the set of quasi-subgradients of f at x, to be those vectors

u such that equality holds in (3.1), i.e.,

( ) ( ) ( ), ,uxu x f x f u+≤ +

with equality if and only if ( )u f x+∈∂ .

Equivalently,

( ) ( ) ( ) ( ) ( ){ }: , ,f x u u w u x f w f x+∂ = ≥ ⇒ ≥

( ) ( ){ }: ux
uu w f w f x= ∈ ⇒ ≥H

( ) ( ){ }: ux
uu f w f x w= < ⇒ ∉ H

( ){ }: .o ux
uf xu L f= = Φ∩ H

That is, u  is a quasi-subgradient of f  at x if ( )
o
f xL f lies entirely on one side of the

hyperplane through x with direction vector u , or equivalently, ux
uH  is a non-intersecting

barrier of ( )
o
f xL f .  ( z

uH  is a barrier for a set S if

( )sup , .)
x S

u x z
∈

≤

In many cases (e.g., as we shall see, when f  is continuous and convex or explicitly

quasi-convex), there is a one-to-one correspondence between quasi-subgradients and

level set supports (see Figure 12).  (This assumes, of course, that the vectors in ( )f x+∂

are normalized in some manner, since any multiple of a quasi-subgradient is also a quasi-

subgradient.)  However, Figure 13 depicts quasi-subgradients which do not produce
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corresponding level set supports.  Any u which is a convex combination of 0u  and 1u  is

a quasi-subgradient in Figure 13.

To see that level set supports, conversely, do not necessarily correspond to quasi-

subgradients, consider the function 2:f E  defined by

( ) ( )
1 2 1 2 1

1 2
1 2 1 1

0 if 1, or 1 & 
,

 otherwise 

x x x x x
f x x

x x x x

+ < + = ≥ 0.5=  + ≥ 0 & ≥ 0
whose graph and level sets are illustrated in Figure 14 J&B.  The set 1L f  is supported at

the point x=(0.5, 0.5) by the hyperplane 1 2 1x x+ =  (i.e., ( )
1
1,1

H ) but unfortunately 
1

oL f  has

a nonempty intersection with this hyperplane, and so u=(1,1) is not a quasi-subgradient of

f at x=(0.5, 0.5).

The correspondence between level set supports and quasi-subgradients failed for the

function in Figure 13 because ( ) ( )cl o
f x f xL f L f≠ , while the failure for the function in

Figure 14 results from the fact that ( )
o
f xL f  contained boundary points.  In general, if

( ) ( )cl o
f x f xL f I f=

then

( ) ux
uu f x H+∈∂ ⇒

supports ( )f xL f  at x.  Conversely, if ( )
o
f xL f  is open, then

ux
uH  is a barrier (or support) for ( )f xL f at x ( )u f x+⇒ ∈∂ .

The importance of the quasi-subgradient derives mainly from the following

properties:

(i) ( ) ( )0 argminf x x f x+∈∂ ⇔ ∈

(ii) ( ) ( ) ( )f x f x f x+ ++∂ ≠ Φ ⇒ =

Thus our question "does b0 lie in a surrogate gap?" is equivalent to the question "does F

have a quasi-subgradient at b0?".  Toward answering this question, we may use the

following sufficient conditions, the proofs of which are very straightforward.  (Note that

any support is a barrier, but not conversely.)
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(i) If ( )
o
f xL f  is a non-empty open set, and if ux

uH  is a barrier for ( )
o
f xL f , then

( )u f x+∈∂ .

(ii) If ( )
o
f xL f  is non-empty and f is upper semi-continuous on some set containing

( )
o
f xL f , and if  ux

uH  is a barrier for ( )
o
f xL f , then ( )u f x+∈∂ .

(iii) If ( )
o
f xL f  is non-empty and f is upper semi-continuous on some set containing

( )
o
f xL f , and if  ux

uH  supports  ( )f xL f , then ( )u f x+∈∂ .

(iv) If f is quasi-convex and ( )cl o
f xx L f∉ , then ( )f x+∂  is non-empty.

(v) If f is a quasi-convex function which is upper semi-continuous on ( )f xL f  for

some x, then ( )f x+∂  is non-empty.

EXAMPLES

The following examples will help to illustrate the concepts which have been

presented.

Example 1.  Consider the problem

( ) 2 2
1 2Minimize f x x x= +

subject to

0
1 2 1x x b+ ≥ 1 =

0
1 2 21x x b− ≥ =

Our optimal response function, ( )F b , is

( ) { }2 2
1 2 1 2 1 2 1 1 2 2, min : ,F b b x x x x b x x b= + + ≥ − ≥

( )2 2
1 2 1 2

2
1 1 2

2
2 1 2

1 2

0.5   if 

   if 0, 0

0.5    if 0, 0

0   if 0, 0

b b b b

b b b

b b b

b b

 + ≥ 0, ≥ 0

0.5 > <= 

< >
 < <

as can be seen graphically (see Figure 15a).  Its contours are depicted in Figure 15b.

The surrogate program corresponding to any u∈U , where
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( ){ }1 2 1 2 1 2, : 1,u u u u u u= + = ≥0, ≥ 0U

is

( ) ( ) ( ){ }0 2 2
1 2 1 1 2 2 1 2, inf :S b u x x u x x u x x= + + + − ≥ 1

( ) ( ){ }2 2
1 2 1 1 2 2 1 2inf :x x x u u x u u= + + + − ≥1

( ){ }2 2
1 2 1 2 1inf : 2 1x x x x u= + + − ≥ 1

which has the solution (see Figure 15c):

( ) ( )
0

1 2 12

1

1,     for 0 1, 1
1 2 1

S b u u u u
u

= ≤ ≤ = −
 + − 

The surrogate dual is therefore

$ ( ) ( )0 0sup ,
u

S b S b u
∈

=
U

( ) ( )0 0 0, ,  where 0.5,0.5S b u u= =

=1.

Thus b0 = (1,1) is not in a surrogate gap, since

$ ( ) ( )0 0 1S b F b= =

and it is evident from Figure 15 that F  has no surrogate gaps whatsoever.

Our next example illustrates the existence of surrogate gaps.

Example 2.

Consider the problem

1 2Minimize  x x+

subject to

0
1 2 12x x b+ ≥ 4 =

0
1 2 22 3x x b+ ≥ =

1 2 and  both nonnegative and integerx x

The graph of our optimal response function, F , is sketched in Figure 16a and its

contours are shown in Figure 16b.  Note that ( )F b  is both isotonic and lower semi-

continuous everywhere, but clearly is not quasi-convex.



Quasi-conjugacy & Surrogate Duality 12

The surrogate problem with parameter u∈U , where (as before),

( ){ }1 2 1 2 1 2, : 1,u u u u u u= + = ≥0, ≥ 0U

is

( )
{ }

( ) ( ){ }
i

0
1 2 1 1 2 2 1 2 1 2

x 0,1,2,...
, minimum : 2 2 4 3S b u x x u x x u x x u u

∈
= + + + + ≥ +

{ }
( ) ( ){ }

i
1 2 1 1 2 2 1

x 0,1,2,...
minimum x : 1 1 3x x u x u u

∈
= + + + + ≥ +

which has the solution

( )
( )

( ) ( )
( )

( ) ( )

1
1 2 1

1 10

1
1 2 1

2 1

3 21  if , i.e., 0.5 1
1 1

,
3 5 1 if ,  i.e., 0 0.5

1 2

u u u u
u u

S b u
u

u u uu u

 +   = + ≥ ≤ ≤   + +   = 
+    = − < ≤ <    + −   

where z    denotes the smallest integer greater than or equal to z.  (That this is the

solution may be seen in Figure 16c:  the minimum will always be attained at a point on a

coordinate axis.)  This solution is graphed as a function of u  in Figure 16d.

The surrogate dual is $ ( ) ( )0 0sup ,
u

S b S b u
∈

=
U

 and its solution, obtained from Figure

16d, is $ ( )0 3,S b =  and

( ) { }0
1

1argmin , : 13u
S b u u u= ∈ ≤ ≤U

We see, therefore, that b0 = (4,3) is not in a surrogate gap, since from Figure 16b,

( )4,3 3.F =

It follows then that any optimal multiplier u  is a quasi-subgradient, so

( ) { }1 2 1
14,3 : 1, 1 .3F u u u u+∂ = ≤ ≤ = −

An examination of Figure 16e confirms this; any direction between ( )1 1 2,3 3u =  and

( )2 1,0u =  is a barrier of 3 2
oL F L F= .  (It was demonstrated in [2] that b0=(4,3) is in a

GLM (generalized Lagrangian multiplier) duality gap.  This is evident from Figure 16a:

the epigraph of ( )F b  has supports only at the points indicated in Figure 16f, and all other

points must  be in a GLM duality gap.)
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We might now ask, "does our F  have any surrogate gaps?".  Further inspection

indicates that the areas indicated in Figure 16g, for example, are surrogate gap regions.

That is, the triangular area

( ){ }1 2 1 2 1 2, : 3, 2, 6b b b b b b> < + ≤

is a surrogate gap region.  For any point b in these regions, we cannot construct a

hyperplane which acts as a non-intersecting barrier of ( )
o
f xL F .

An important relationship is illustrated here, namely, that surrogate gaps form a

subset of the GLM duality gaps, i.e., if b0 is in a surrogate gap, so that no surrogate

multiplier vector u≥0 can be found such that ( ) ( )0 0,S b u F b= , then it is also true that no

GLM multiplier vector u≥0 may be found such that

( ) ( ){ } ( )0 0

x
minimum .f x u b g x F b + − = 

SUMMARY

We have seen that quasi-conjugacy and the quasi-subgradient provide a basis for

interpreting surrogate duality, much as conjugacy and the subgradient provide a basis for

understanding Lagrangian duality.

While the Lagrangian dual has gaps when F  is not convex, i.e.,

( ) ( ) ,F b F b∨∨ <

the surrogate dual  has a reduced gap region, as a  consequence of the property

( ) ( ) ( ) .F b F b F b∨∨ ++≤ ≤

That is, F ++  provides a better approximation to F  than does F ∨∨ .

A much more complete discussion of the relationship between the surrogate and

Lagrangian dual may be found in [2].  Other important properties of the quasi-conjugates

and quasi-subgradients are reported in [3].
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Figure 1.  A hyperplane with direction vector u through x0.

Figure 2.  The c-level set of the function f.
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Figure 3.  An example  illustrating cl o
c cL f L f≠ .

Figure 4.  A c-level set of a function defined on E2.
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(a)

(b)

Figure 5.  The level  set ( )f xL f  corresponding to a  point x.
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Figure 6.  The hyperplane z
uH  corresponding to ( )zf u+ .

Figure 7a.  The function ( ) ( )2expf x x= − −
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Figure 7b.  Graphs of selected z-quasi-conjugates of ( ) ( )2expf x x= − −

Figure 8.  Geometric interpretation of f ++  (where f  is quasi-convex)
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Figure 9.  Geometric interpretation of f ++  (where f  is not quasi-convex).

Figure 10.  Level curves of an isotonic function
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Figure 11.  Illustration of a surrogate gap (at b0).

Figure 12.  The hyperplane ux
uH  corresponding to quasi-subgradient u of the function f

is a support of the level set ( )f xL f  (where f is explicitly quasi-convex).
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Figure 13.  The quasi-subgradient set of f is the convex hull of u0 and u1, which do

not correspond to supports of the level set ( )f xL f .
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(a)

(b)

Figure 14.  The graph (a) and the 1-level set (b) of an example function f
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(a) (b)

(c )

Figure 15.  Example 1: (a) graphical solution; (b) contours of optimal response function
F ; (c) graphical solution of surrogate problem.
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(a)

(b)

Figure 16.  Example 2:  (a) graph of optimal response function F ; (b) contours of
optimal response function F
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(c ) (d)

(e)

Figure 16 (continued).  Example 2: (c ) graphical solution of surrogate problem; (d)
graphical solution of surrogate dual problem; (e) the quasi-subgradient set of F  at 0b
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(f)

(g)

Figure 16 (continued).  Example 2:  (f) Lagrangian duality gap region; (g) surrogate
duality gap regions


