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Conjugate functions have played an important role in the theory of convex
programming. (For example, see[4].) An analogous role in quasi-convex programming
is played by quasi-conjugate functions. Conjugates relate to epigraph supports, whereas
guasi-conjugates relate to level set supports and barriers; conjugate functions provide a
basis for Lagrangian duality, whereas quasi-conjugate functions provide a basis for
surrogate duality. In this paper, we shall briefly survey the existing theory of quasi-
conjugacy and surrogate duality as developed by Greenberg and Pierskalla ([2] and [3])
as it relates to nonconvex programming, interpreting it geometrically, and shall then add

severa extensions to this theory.
QUASI-CONJUGATES

A hyperplanein E" isa set, with parametersul E", ut 0, and ¢l E, of the form
HE :{xT E“:(u,x):c} (1.2)
where (u,x) and ux will interchangeably denote the inner product of u and x. The
parameter u determines the orientation of H_ and may be referred to as its direction

vector. In particular, the hyperplane with direction vector u passing through the fixed
point X is HY . (SeeFigure 1.)
A hyperplane H determines two closed halfspaces, one of which we will denote by
H.° :{XT E":(u,x)?3 c} (1.2)
If f is a function from E" into the (extended) redl line, E' =[-¥,+¥],i.e, a

functional, then we denote its c-level-setsby

Lf={xi E":f(x)£d} (1.3)

Lof ={xi E": f(x)<d} (14)

Figure 2 denotes L f for a case in which n=1.
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Our interest in level sets results chiefly from the fact that quasi-convex functions may

be defined to be functions all of whose level sets are convex.

For many functions, L f =cl L2 f (theclosureof L°f), but suchis not always the
case, as demonstrated by Figure 3. Here L2f | L_f , but it is neither the case that

o L°f =L f,noreventhat ol L°f I L_f. Notethat f is not lower semi-continuous, nor
explicitly quasi-convex (because of the "flat" spot in the graph).

Figure 4 depicts a c-level-set of afunction defined on E>. The boundaries of level
sets are simply the contour curves of the function. Given apoint X E", alevel set of

particular interest is L, f, depicted in Figures 5 a&D. In Figure 5b we note that x need
not be aboundary point of L, f.

We next define the z-quasi-conjugatefunction f,': E" ® E'where 2 E' and

f (u)=z- inf{ f(x):(u,x)3 z} (1.5)
Note that it is helpful to consider f," as afunction of direction vectors, i.e,
£ (u)=z-inf{f (x):xi H}. (1.6)

If f isaquasi-convex function, asin Figure 6, and H_ isasupporting hyperplane for
some level set L f,then f, (u)=2z- c, provided that the global minimum point
x*=argmin f (x) doesnot liein H,” (inwhichcase f," (u)=z- f(x*)).

One important property which should be noted isthat f," is quasi-convex (without
assuming any propertiesof f).

We now consider the second z-quasi-conjugate ( fr ): (x) , defined in the obvious
way as the z-quasi-conjugate of f,, and define the normalized second quasi-conjugate

of f as

£ (x) = ?JEE( ) (%) (L.7)
Example:
Let f(x)=-&* =- exp(-xz) , for X E' (see Figure 78). Notethat f is quasi-convex.

Then
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£ (u)=z-inf{f (x):ux3 7

=z- inf{-exp(- xz):ux3 z}
:‘::z+exp(- 2%2) ifz>0andu! 0
=t-¥ifz20andu=0
|'

~Z+1ifz£0
|
The second z-quasi-conjugate is
(f7), = z-inf{f (u):ux* 7}
iz-(z+1)if z£0
[Z-¥ifz>08&Xx=0

_1 2
1 2\ .
1z |nf{z+exp( Az).AEO} ifz>0&x<0

|
:;:-1 if ZE0
=i-¥ifz>0&x=0
;F-exp(-xz) ifx>0& x1 0
And hence
£ (x) =sup(£,"), (x)
_jMax {-1,-¥} ifx=0
_-T[Max{-l,-exp(-xz)} if x2 0
-- e <)
=1(x)
(See Figure 7b.)

Thefunction f** has several important properties:

PROPERTY (i): (see[2]): f'"isquasi-convex, and
f(x)2 7 (%2 £7(x),

P '
iZ- |nf{z+exp(- %2):%3 x} ifz>0& x<0

where % isthe second (convex) conjugate. That is, f** providesaquasi-

convex approximationto f , from below, which is better than the convex

approximation provided by .
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PROPERTY (ii) (see[2]):
£ (x) =sup inf {f(w):(uw)? (ux)} (1.8)

=sup inf {f(w):wl H"}

Thisrelaxation is easier to interpret geometrically than the definition of f**. In

Figure 8, we see depicted the three hyperplanes through x with the direction vectors (7,
ut, and P, together with the points

W = argmin{ f(w):wi H;‘:X}

w

It is clear that for the function depicted, rotating a hyperplane clockwise from Hu“fx

through Hu“fx to HJOOX (which supports the contour curve through x of the function f)

Al

produces a maximizing sequence {w} convergingtox, and f*"(x)=f (x).

Figure 9 depicts a function which (unlike that in Figure 8) is not quasi-convex.
Again, rotating a hyperplane clockwise from H:‘fx to Hl:fx produces a maximizing
sequence {\7\/'} , which does not, however, converge to Xx. Moreover,

f (W*O) = f (W°) =f 7 (x) <f (x).
Furthermore, it isshown in [2] that if f isan isotonic function, i.e.,
w3 vp f(w)3 f(v),
the optimal u in equation (1.8) has the property ul E",i.e, 8 0. Hence, if f isisotonic,
f++(x):stjpirv|vf{f(w):uw3 ux} (1.9)
PROPERTY (iii): If L, f iscompact for al c, then
L.f™=convL,f
for all c (cf. [3].) More generdly, for al c,
Lf*1 cconvlL,f

and
L.f* EconvlL,f. (1.10)
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Proof: The proof of (1.10) isatrivia result of property (i). Let xI cl conv L f . Then x
may be separated from cl conv L. f , i.e, thereisay such that xy >wy for all
wl cl conv L, f . By Property (ii),

£ (x) = supinf { f (w) :wu® xu}
and so, in particular,

f(x)2 K
where

K :iaf{f(v@:wy3 xy}
Now, given d >0, there must exist w, such that w,y3 xyand f(w,) <K +d. But
w,y3 xyimpliesthat w, T conv L f andhence w, T L f,i.e, f(w)>c. Therefore,
we have, for al d >0,

c<f(w)<K+d£f"(x)+d
orsimply c-d < f*"(x) foral d >0. Therefore, c£ f**(x) andso xi L2f**,
proving that

Lf*1 cconvlL,f.

We are now in a position to introduce the concept of surrogate mathematical programming.

Quasi-conjugacy & Surrogate Duality



SURROGATE MATHEMATICAL PROGRAMMING
Consider the family of mathematical programs obtained by parameterizing the

constraint right-hand-side vector and whose optimal value F.E™ is defined by
F(b)=inf{f(%):g(x)® b,xi S} 2.2)
where f :S® E', S| E", g:S® E™,and bl E™. (If the problem isinfeasible, then
we define F (b) = +¥ )
Note that if b*3 b?, then
{x:g(x)3 b, x1 S}i {x:g(x)3 b?, xi S}
and so
inf{x:g(x)3 b, x1 S} 3 inf{x:g(x)3 b?, xI S},
ie, F(b')2 F(b?). ThusF isisotonic.
A surrogate problem, parameterized by b and the surrogate multiplier vector ul E,
is defined to be that of computing
S(u,b) =inf{ f(x):ug(x) 2 ub,xI S}. 2.2)
Thisis equivalent to
S(u,b) =inf{F(b):ub3 ubxT S}. 2.3
We further define the surrogate dual problem to be that of computing

S(b) =sut;|ES(b,u)

=supinf{ f (x):ug(x)3 ub,xI S} (2.4)

wo X

= supinf {F (b):ub * ub}.

w0
Without affecting the supremum we may perform the outer optimization over the subset

of surrogate multipliers
U=ful E":§ u =1y
20 )

which is both convex and compact. Any directionin E!" has a representative vector in

U . We may then write
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S(b) = sup S(b,u).
Comparison of (2.4) with equation (1.9) shows that, since F is isotonic,
S(b) =F**(b). (2.5)
Weknow that F**(b) £ F (b), and we are naturally interested in knowing under what
conditions equality holds. That is, when does there exist a u® 0 such that solving the

surrogate problem S(b,u) solves our original problem, and S(u,b)=F(b)? If sucha u

doesnot exist, b issaidto liein asurrogate gap. The point b° isin such agap in Figure

11, where

F™ (b) =F (") < F(b°).
This figure also illustrates one of the results stated in [2]. Suppose, for some u* 3 0, b°
isaconvex combination of pointsin the set argmin{ F(b):ub?3 ubo}. Then either
some solution x of the surrogate problem S(t?,u*) isasolution of F (b°) ,orese b’ is

in a surrogate gap.
The quasi-subgradient, to be introduced next, will help to characterize the surrogate

gaps of a mathematical program.
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QUASI-SUBGRADIENTS
The conjugate inequality [4], namely,

(xY)ET(x)+£°(y),
with equality if and only if yI 1f (x), where f (x) isthe subgradient set of f at the

point x, and fY isthe convex conjugate of the function f has an analogue in quasi-
conjugate theory. It is easy to derive the result
(u,x) £ f(x)+f, (u) (3.1
and we shall define " f (), the set of quasi-subgradientsof f at x, to be those vectors
u such that equality holdsin (3.1), i.e,
(u,x) £ f(x)+f, (u),
with equality if and only if ul 1" f(x).
Equivalently,
1 f (x)={u:(u,w)3 (ux)p f(w)3 f (x)}
:{u:wl H>p f(w)3 f(x)}
={usf(w)<f(x)p wi H
={u: L FOAH” :F} :
That is, u isaquasi-subgradient of f a x if L‘}(X)f lies entirely on one side of the
hyperplane through x with direction vector u, or equivalently, H,™ is a non-intersecting
barrier of L%, f. (HJ isabarier for aset Sif
smijg(u,x) £7)
In many cases (e.g., aswe shall see, when f is continuous and convex or explicitly
guasi-convex), there is a one-to-one correspondence between quasi-subgradients and
level set supports (see Figure 12). (This assumes, of course, that the vectorsin " f (x)

are normalized in some manner, since any multiple of a quasi-subgradient is also a quasi-

subgradient.) However, Figure 13 depicts quasi-subgradients which do not produce
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corresponding level set supports. Any uwhich is aconvex combination of u® and u* is
aquasi-subgradient in Figure 13.
To see that level set supports, conversely, do not necessarily correspond to quasi-

subgradients, consider the function f : E? defined by

¢ j0ifx +x, <1, 0rx +X, =1&x 3 0.5
X, X, ) =
() »'fx1+x20therwise(x13 0&x 3 0)

whose graph and level sets areillustrated in Figure 14 J&B. Theset L, f is supported at
the point x=(0.5, 0.5) by the hyperplane x +x, =1 (i.e, H(llyl)) but unfortunately L‘l’f has
a nonempty intersection with this hyperplane, and so u=(1,1) is not a quasi-subgradient of
f at x=(0.5, 0.5).
The correspondence between level set supports and quasi-subgradients failed for the
function in Figure 13 because cl L}

f1L,f,whilethefailurefor the functionin

(x)
Figure 14 results from the fact that L°

(x)

) f contained boundary points. In generdl, if

d Lt =1y
then
ul 17 (x)p H

supports L, f at x. Conversely, if Lj, f isopen, then

)
H.* is abarrier (or support) for L, fax p ul 1°F(x).

The importance of the quasi-subgradient derives mainly from the following
properties:

(i) of 1°f(x) 0 xI argmin f(x)

(i) TH(x)rFP f(x)=f"(x)
Thus our question "does b° lie in a surrogate gap?" is equivalent to the question "does F
have a quasi-subgradient at b®?". Toward answering this question, we may use the

following sufficient conditions, the proofs of which are very straightforward. (Note that

any support is a barrier, but not conversely.)
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0] If L"f(x) f isanon-empty open set, and if H,* isabarrier for L"f(x) f, then
ul 17 f(x).
(i) If LS ,f isnon-empty and f is upper semi-continuous on some set containing

(x)

L, f,andif H isabarier for L, f,then ul 1" f(x).

(x) (x)

(i) If L ) f isnon-empty and f is upper semi-continuous on some set containing
Lof(x

f,andif H supports L, f,then ul 1" f(x).

) (x)

(v) Iffisquesi-convexand xi ol Lj, f ,then "f (x) isnon-empty.
v) If f is a quasi-convex function which is upper semi-continuouson L, x) f for

somex, then " f (x) is non-empty.

EXAMPLES
The following examples will help to illustrate the concepts which have been
presented.
Example 1. Consider the problem

Minimizef (x) =x; +x;
subject to
X+ %2 1=h
X- %3 1=b;
Our optimal response function, F(b), is
F (b)) =min{x?+x2: %+ %3 b,% - %2 by
}qu+@)wq3agso
_1080 ifb,>0,b,<0

i0.50; ifb,<0b,>0
10 ifh<0b,<0

as can be seen graphically (see Figure 15a). Its contours are depicted in Figure 15b.

The surrogate program corresponding to any ul U , where
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U ={(u,u,):u, +u,=1u,20,u,3 0}

S(B.u) =inf X+ :u (% + %)+ (x - x)* 1

2

=inf {3 +x3 1 (U +u,)+ % (U - uy) 3 3
:inf{xf+x22: X+ % (2u,- 1)3]}

which has the solution (see Figure 15c):

S(P,uj= ¥, . forOfu £1,u, =1-
( U) /é__l_(zul_l)ZH ul u2 u1

The surrogate dual is therefore
é(b‘)) :supS( 17, u)

ulu
= S(bo,uo), whereu® =(0.5,0.5)
=1
Thusb® = (1,1) is not in a surrogate gap, since

S(0°) = F(0°) =1

and it is evident from Figure 15 that F has no surrogate gaps whatsoever.

Our next example illustrates the existence of surrogate gaps.
Example 2.
Consider the problem
Minimize x + X,
subject to
X +2x%,3 4=h
2% +%,* 3=h,
x, and x, both nonnegative and integer

The graph of our optimal response function, F , is sketched in Figure 16a and its

contours are shown in Figure 16b. Note that F (b) is both isotonic and lower semi-

continuous everywhere, but clearly is not quasi-convex.
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The surrogate problem with parameter ul U , where (as before),

:{(ul’UZ) U +u, =1u 2 0,u,° 0}

S(H’,u) mlnlmum{x1+x2 U (X +2x,)+u, (2% +%) 3 4u +3u

1{012,.}
= minimum {x, +%, 1%, (1+u,)+x,(1+u,)* 3+u}

xi {0,1,2,..}

which has the solution

143+ u

jlj%( u/l+u1h' /1+ |fu1 u,,i.e,05£u £1
i

€3+ u_ég

@( Lll)(1+u 678 /(2- )4 -1|fu1<u2,|e 0£u, <05

where @z} denotes the smallest integer greater than or equal to z. (That thisisthe

solution may be seen in Figure 16¢: the minimum will always be attained at a point on a

coordinate axis.) Thissolution is graphed as afunction of u in Figure 16d.

The surrogate dual is §(b°) =sup S( 1, u) and its solution, obtained from Figure

ulu
16d, is S(b°)=3, ad
argmlnS(bO u {ul U: }/Eulm}
We see, therefore, that b° = (4,3) is not in a surrogate gap, since from Figure 16b,
F(4,3)=3.
It follows then that any optimal multiplier u isaquasi-subgradient, so
1F(43)={u: %20 £10,=1- u}.
An examination of Figure 16e confirms this; any direction between u' = ( }é %) and

=(1,0) isabarrier of L3F =L,F . (It was demonstrated in [2] that b0=(4,3) isin a
GLM (generalized Lagrangian multiplier) duality gap. Thisis evident from Figure 16a:
the epigraph of F (b) has supports only at the pointsindicated in Figure 16f, and all other
points must beina GLM duality gap.)
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We might now ask, "does our F have any surrogate gaps?'. Further inspection
indicates that the areas indicated in Figure 16g, for example, are surrogate gap regions.

That is, the triangular area
{(b,b,):b, >3 b,<2b, +b, £6}
is asurrogate gap region. For any point b in these regions, we cannot construct a
hyperplane which acts as a non-intersecting barrier of L° x) F.
An important relationship is illustrated here, namely, that surrogate gaps form a
subset of the GLM duality gaps, i.e., if b° isin a surrogate gap, so that no surrogate

multiplier vector 8 0 can be found such that S(bo,u) =F (bo), then it is also true that no

GLM multiplier vector (8 0 may be found such that

minimum {f (x)+ug®- g(x)E} = F(bo).

SUMMARY
We have seen that quasi-conjugacy and the quasi-subgradient provide a basis for
interpreting surrogate duality, much as conjugacy and the subgradient provide a basis for
understanding Lagrangian dudlity.
While the Lagrangian dual has gaps when F isnot conve, i.e.,
F*(b) <F (b),
the surrogate dual has a reduced gap region, asa consegquence of the property
F*(b)£F " (b)£F(b).
That is, F** provides a better approximationto F than does F.
A much more complete discussion of the relationship between the surrogate and
Lagrangian dual may be found in [2]. Other important properties of the quasi-conjugates

and quasi-subgradients are reported in [3].
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Figure 7a. The function f (x)=- exp(- xz)
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Figure 7b. Graphs of selected z-quasi-conjugates of f (x) =- exp(- xz)
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Figure 8. Geometric interpretation of f** (where f isquasi-convex)
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Figure 9. Geometric interpretation of f** (where f isnot quasi-convex).
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Figure 10. Level curves of an isotonic function
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Figure 12. The hyperplane H_;* corresponding to quasi-subgradient u of the function f

isasupport of the level set L, (x)f (where f isexplicitly quasi-convex).
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(f is constant in this ring)

Figure 13. The quasi-subgradient set of f isthe convex hull of \ and u', which do

not correspond to supports of the level set Lf(x)f .
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Figure 14. The graph (@) and the 1-level set (b) of an example function f
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Figure 15. Example 1: (a) graphical solution; (b) contours of optimal response function
F ; (c) graphical solution of surrogate problem.
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Figure 16. Example 2: (@) graph of optimal response function F ; (b) contours of
optimal response function F
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Figure 16 (continued). Example 2: (c) graphical solution of surrogate problem; (d)
graphical solution of surrogate dual problem; (€) the quasi-subgradient set of F at b’
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(f)

Figure 16 (continued). Example 2: (f) Lagrangian duality gap region; (g) surrogate

duality gap regions
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