W-Shapes | ASTM A992, $F_y = 50 \text{ ksi}$, $F_u = 65 \text{ ksi}$ **S-Shapes** | ASTM A36, $F_y = 36 \text{ ksi}$, $F_u = 58 \text{ ksi}$ **C- and MC-Shapes** | ASTM A36, $F_y = 36 \text{ ksi}$, $F_u = 58 \text{ ksi}$

CONDITION			ASD	LRFD	RELATED INFO	
Tension			$0.6F_{y}A_{g} \leq 0.5F_{u}A_{e}$	$0.9F_{y}A_{g} \leq 0.75F_{u}A_{e}$	For A_e , see Equation D3-1.	
		$L_b \leq L_p$	$0.66F_yS_x$	$0.99F_yS_x$	See Note 1.	
Bending	Strong Axis	$L_p < L_b \leq L_r$	Use linear interpolation between L_p and L_r .		$L_p = 300 r_y / \sqrt{F_y}$	
Denunig		$L_b = L_r$	$0.42F_yS_x$	$0.63F_yS_x$	L_r and strengths when $L_b > L_r$	
	Weak Axis		$0.9F_yS_y$	$1.35F_yS_y$	are given in the AISC Manual.	
Shear (in strong axis)			$0.4F_yA_w$	$0.6F_yA_w$	See Note 2.	
Compression	$Kl/r \le 800/\sqrt{F_y}$		$0.6F_yA_g \times 0.658^P$	$0.9F_yA_g \times 0.658^P$	$P = F_{v} (Kl/r)^{2}/286,000$	
	$Kl/r > 800/\sqrt{F_y}$		$150,000A_g/(Kl/r)^2$	$226,000A_g/(Kl/r)^2$	See Note 3.	

Notes:

- 1. Multiply equations given for $L_b \leq L_p$ by value in parentheses for W14×90 (0.97), W12×65 (0.98), and W6×15 (0.95).
- 2. Multiply equations given by 0.9 for W44×230, W40×149, W36×135, W33×118, W30×90, W24×55, W16×26, W12×14 and all Cand MC-shapes. In weak axis, equations given can be adapted by using $A_w = 1.8b_f t_f$.
- 3. Not applicable to slender shapes. For slender shapes, use QF_y in place of F_y , where $Q = Q_sQ_a$ from Section E7. For C- and MC-shapes, also check Section E4.

Basic Design Values 1 Copyright © 2005 Based upon simplifying assumptions and arbitrary limitations. Direct use of the 2005 AISC Specification may be less constrained and less conservative.

American Institute of Steel Construction, Inc. One East Wacker Drive, Suite 700 Chicago, IL 60601 www.aisc.org structural steel: the material of choice

Bolts | ASTM A325, F_u = 120 ksi or ASTM A490, F_u = 150 ksi Welds | F_{EXX} = 70 ksi Connected Parts

Copyright © 2005 by AISC

CONDITION			ASD LRFD		RELATED INFO	
	Tension		$0.38F_uA_b$	$0.56F_uA_b$		
lts	Shear (N bolts, per	shear plane)	$0.2F_uA_b$	$0.3F_uA_b$	Multiply by 1.25 for X bolts.	
$\mathbf{B}0$	Slip Resistance (Cla	ss A, STD holes)	$0.14F_uA_b \qquad \qquad 0.21F_uA_b$		Per slip plane. See Note 1.	
	Bearing		$0.6F_{u}L_{c}t \le 1.2F_{u}d_{b}t \qquad 0.9F_{u}L_{c}t \le 1.8F_{u}d_{b}t$		See Note 2.	
	Shear (all welds except CJP)		$0.3F_{EXX}A_{w}$	$0.45F_{EXX}A_{w}$	See Note 3.	
lds	PJP Groove Welds	Tension	$0.32F_{EXX}A_{w} \qquad \qquad 0.48F_{EXX}A_{w}$		See Section J2.1a.	
We		Compression	$0.48F_{EXX}A_{w} \leq 0.6F_{y}A_{BM}$	$0.72F_{EXX}A_{w} \leq 0.9F_{y}A_{BM}$	Joint not finished to bear.	
	CJP Groove Welds		Strength equa			
ts	<u>م</u> Tension		$0.6F_{y}A_{g} \leq 0.5F_{u}A_{e}$	$0.9F_yA_g \leq 0.75F_uA_e$	For A_e , see Equation D3-1.	
Par	kar Shear		$0.4F_{y}A_{g} \leq 0.3F_{u}A_{n}$	$0.6F_yA_g \leq 0.45F_uA_n$		
cted	Block Shear		$0.3F_uA_{nv}+0.5U_{bs}F_uA_{nt}$	$0.45F_{u}A_{nv} + 0.75U_{bs}F_{u}A_{nt}$	See Note 4.	
onne	Compression	$Kl/r \le 25$	$0.6F_yA$	$0.9F_yA$		
Ŭ	Compression	Kl/r > 25	Same as for W-sl	hapes with $A_g = A$.		

Notes:

- 1. Slip checked as a serviceability limit state using ASD load combinations for ASD, LRFD load combinations for LRFD. For Class B surfaces, multiply by 1.43. For OVS or SSL holes, multiply by 0.85. For LSL holes, multiply by 0.7.
- 2. For LSL holes parallel to the direction of load, multiply by 0.83.
- 3. For fillet welds, multiply by 1.5 for transverse loading (90-degree load angle). For other load angles, see Section J2.
- 4. For calculation purposes, $F_{\mu}A_{n\nu}$ cannot exceed $F_{\nu}A_{g\nu}$. $U_{bs} = 1$ for a uniform tension stress; 0.5 for non-uniform tension stress.

HSS | ASTM A500 grade B, Rectangular $F_y = 46$ ksi, $F_u = 58$ ksi , Round $F_y = 42$ ksi, $F_u = 58$ ksi **Pipe** | ASTM A53 grade B, $F_y = 35$ ksi, $F_u = 60$ ksi

CONDITIO	Ν	ASD LRFD		RELATED INFO	
Tension		$0.6F_{y}A_{g} \leq 0.5F_{u}A_{e}$	$0.9F_yA_g \leq 0.75F_uA_e$	For A_e , see Equation D3-1.	
Bonding	Rectangular HSS	$0.66F_yS$	$0.99F_yS$	See Note 1.	
Denuing	Round HSS, Pipe	$0.78F_yS$	$1.17F_yS$	See Note 2.	
Shear	Rectangular HSS	$0.36F_yA_w$	$0.54F_yA_w$	See Note 3.	
Shear	Round HSS, Pipe	$0.18F_yA_g$	$0.27F_yA_g$	See Note 4.	
Compression	$Kl/r \le 800/\sqrt{F_y}$	$0.6F_yA_g \times 0.658^P$	$0.9F_yA_g \times 0.658^P$	See Note 5.	
	$Kl/r > 800/\sqrt{F_y}$	$150,000A_g/(Kl/r)^2$	$226,000A_g/(Kl/r)^2$	$P = F_{y} \left(K l / r \right)^{2} / 286,000$	

Notes:

- 1. Not applicable if limit at right is exceeded (see Section F7).
- 2. Not applicable if $D/t > 2,030/F_y$. (see Section F8).
- 3. Not applicable if limit at right is exceeded (see Section G5).
- 4. Not applicable if $L_{\nu}/D > 75$ (see Section G6).
- 5. For rectangular HSS, if limit at right is exceeded, use QF_y in place of F_y , where $Q = Q_a$ from Section E7.2. For round HSS and pipe with $D/t > 3,190/F_y$, use QF_y in place of F_y , where $Q = Q_a$ from Section E7.2.

Size Limits for Rectangular HSS, in.*		Nominal Wall Thickness							
		⁵ / ₈	¹ / ₂	³ / ₈	⁵ / ₁₆	¹ / ₄	³ / ₁₆	¹ / ₈	
Donding	Flange	18	14	10	9	7	5	$3^{1}/_{2}$	
Denuing	Web	20	20	20	18	14	10	7	
Shear	20	20	20	18	14	10	7		
Compression		20	16	12	10	8	6	4	

*Table only covers up to 64-in. periphery limit in ASTM A500.

Basic Design Values 2 Copyright © 2005 Based upon simplifying assumptions and arbitrary limitations. Direct use of the 2005 AISC Specification may be less constrained and less conservative.

American Institute of Steel Construction, Inc. One East Wacker Drive, Suite 700 Chicago, IL 60601 www.aisc.org structural steel: the material of choice

Simplified Method (see Note 1)

Step 1. Perform first-order analysis. Use 0.2% of total story gravity load as minimum lateral load in all load combinations.

Step 2. Establish the design story drift limit and determine the lateral load required to produce it.

Step 3. Determine the ratio of the total story gravity load to the lateral load determined in Step 2. For ASD, multiply by 1.6.

Step 4. Multiply first-order results by the tabular value. K=1, except for moment frames when the tabular value is greater than 1.1.

Design Story	Ratio from Step 3 (times 1.6 for ASD, 1.0 for LRFD)										
Drift Limit	0	5	10	20	30	40	50	60	80	100	120
H/100	1	1.1	1.1	1.3	1.4				When ratio exceeds 1.5, simplified		
H/200	1	1	1.1	1.1	1.2	1.3	1.3	1.4	method requires a stiffer structure.		
H/300	1	1	_ 1	1.1	1.1	1.2	1.2	1.3	1.4	1.5	
H/400	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.3	1.4
H/500	1	1	1	1	1.1	1.1	1.1	1.2	1.2	1.3	1.3

Other Elastic Methods (for plastic design, see Appendix 1)	Effective Length	Forces and Moments	Limitations	Reference
First-order analysis method – second-order effects captured from effects of additional lateral load	K = 1 for all frames (see Note 2)	From analysis	$\Delta_{2nd}/\Delta_{1st} \le 1.5;$ Axial load limited	Section C2.2b
Effective length method – second-order analysis with 0.2% of total story gravity load as minimum lateral load in all load combinations (see Note 3)	K = 1, except for moment frames with $\Delta_{2nd}/\Delta_{1st} > 1.1$	From analysis (see Note 3)	$\Delta_{2nd}/\Delta_{1st} \leq 1.5$	Section C2.2a
Direct analysis method – second-order analysis with notional lateral load and reduced <i>EI</i> and <i>AE</i> (see Note 3)	K = 1 for all frames	From analysis (see Note 3)	None	Appendix 7

Notes:

- 1. Derived from the effective length method, using the B_1 - B_2 approximation with B_1 taken equal to B_2 .
- 2. An additional amplification for member curvature effects is required for columns in moment frames.
- 3. The B_1 - B_2 approximation (Section C2.1b) can be used to accomplish a second-order analysis within the limitation that $B_2 \le 1.5$. Also, B_1 and B_2 can be taken equal to the multiplier tabulated for the simplified method above.
- 4. $\Delta_{2nd}/\Delta_{1st}$ is the ratio of second-order drift to first-order drift, which is also represented by B_2 .