53:134 Structural Design II (Steel Structures) Spring 2006 (Lecture Summary)
 Week 7 (2/27-3/3/06)

2/27/06

- Review of direct stiffness method for springs - discuss basic steps. Solution of HW\#11: 6.2.1.
- Truss Analysis:
o Element equilibrium equation in the local coordinate system.
o Transformations from local to global coordinate system. Local displacements in terms of global displacements; global forces in terms of local forces.
o Element equilibrium equation in the global coordinate system.
- Read: Section 6.2.
- HW\#12: P6.2.2.

3/1/06

- Review of element equilibrium equations in terms of local and global coordinate systems. Solution of HW\#12: P6.2.2.
- Truss Analysis:
o Element equilibrium equation in the local coordinate system.
o Transformation from local to global coordinate system.
o Equilibrium equation in the global coordinate system.
o Assembly of the global equilibrium equation.
o Application of boundary conditions.
o Solution of equilibrium equations.
o Element force recovery.
- Example problems: Example 6.2.1, p. 351: calculation of element stiffness matrix; Example 6.2.2, p. 352: calculation of structural stiffness matrix; Example 6.2.3: Planar truss analysis.
- Recovery of reaction forces: two procedures - use of global equilibrium equations, and use of equilibrium equations at the supports.
- Read: Section 6.2.
- HW\#13: P6.2.6.

3/3/06

- Review of truss analysis using stiffness method: assembly of global equations, application of boundary conditions, solution of the reduced equilibrium equations, element force recovery.
- Solution of HW\#13: 6.2.6.
- Use of more efficient way to generate global equilibrium equations. Example 6.2.4, p. 354.
- Recovery of reaction forces: two procedures - use of global equilibrium equations, and use of equilibrium equations at the supports.
- 3D truss element.
- Read: Section 6.2.2, Truss Analysis.
- HW\#14: 6.2.12 (also calculate the support reactions).

