Atmospheric Attenuation

We modifying radar equations to account for attenuation by multiplying numerator with factor $exp(-2\alpha R)$ where α is the one-way the attenuation coefficient in the same units of distance⁻¹, and *R* is the range to the target. For example, the radar equation for distributed targets:

$$P_r = \left(\frac{G^2 \lambda^2 P_t \theta \phi c \tau}{1024 \ln(2)\pi^2}\right) \frac{\eta}{R^2} = C \frac{\eta}{R^2}$$

becomes:

$$P_r = \left(\frac{G^2 \lambda^2 P_t \theta \phi c \tau}{1024 \ln(2)\pi^2}\right) \frac{\eta}{R^2} e^{-2\alpha R} = C \frac{\eta}{R^2} e^{-2\alpha R}$$

The other radar equations are modified the same way. If α is not constant, but a function of distance, then we use $\exp(-2\int \alpha(R) dR$.

Important Note: The figure above is the attenuation and **not** the attenuation coefficient α . What is plotted in the figure is equivalent to 4.34 α .

Problem. Show that the relationship between attenuation in dB/km and attenuation coefficient is

Attenuation in dB per unit distance $= 4.34 \times \text{attenuation coefficient}$

May 4, 2004

Question. Using the figure above, what is the one-way total atmospheric attenuation for a K-band radar at 22 GHz? over a distance of 20 km?

Answer. At 22 GHz there is a peak in the water vapor absorption and the attenuation (broken curve) is about 0.2 dB/km. The attenuation due to oxygen is about 0.01 dB/km. The attenuation total is then 0.21 dB/km or $0.21 \times 20 = 4.2$ dB or a factor 1/2.63 = 0.38. Alternatively, 0.21 dB/km is equivalent to an attenuation coefficient $\alpha = 0.21/4.34 = 0.04839$ km⁻¹. The attenuation is then exp(-0.04839×20) = 0.38.

Effect of Elevation Angle

Two-way atmospheric attenuation as a function of range and frequency for (a) 0° elevation angle and (b) 5° elevation angle.

