Z, Z and Z-R Relationships

$$P_{r} = \left(\frac{G^{2}\lambda^{2}P_{t}\theta\phi c\tau}{1024\ln(2)\pi^{2}}\right)\frac{\eta}{R^{2}} = C\frac{\eta}{R^{2}} \qquad \eta = \frac{\pi^{5}|\kappa|^{2}}{\lambda^{4}}z \qquad \qquad z = \sum_{Unit \ Volume} D^{6}$$

Radar equation for distributed targets

Radar reflectivity

Radar reflectivity factor (mm⁶/mm³)

Combining these equations, we can write: $P_r = c_2 \frac{z}{R^2}$, and rearrange to get:

$$z = c_3 P_r R^2$$

 c_3 is the so-called *radar constant*. It has units mm⁶/m³ mW⁻¹ km⁻². The radar reflectivity factor z has a tremendous dynamic range so it is convenient to express it on a decibel scale with a reference $z = 1 \text{ mm}^6/\text{m}^3$

$$Z = 10\log_{10}\left(\frac{z \ (\text{mm}^6/\text{m}^3)}{1 \ (\text{mm}^6/\text{m}^3)}\right) \text{ with units dBZ}$$

Using this, we can write

$$z = c_3 P_r R^2$$
$$Z = C_3 + P_r + 20 \log_{10}(R)$$

where Z is measured in dBZ, $C3 = 10\log_{10}(c_3)$, Pr is measured in dBm, and R is in km.

Marshall-Palmer DSD.

Given a DSD one can compute a Z-R relationship. In practice, empirical relationships are used:

$$Z = AR^{b}$$

 $Z = 200R^{1.6}$ Marshall - Palmer or MP relationship

There are many relationship in use. The table below is from the NOAA ROC:

Table 1. Z-R RECOMMENDATIONS		
RELATIONSHIP	Optimum for:	Also recommended for:
Marshall-Palmer (z=200R ^{1.6})	General stratiform precipitation	
East-Cool Stratiform (z=130R ^{2.0})	Winter stratiform precipitation - east of continental divide	Orographic rain - East
West-Cool Stratiform (z=75R ^{2.0})	Winter stratiform precipitation - west of continental divide	Orographic rain - West
WSR-88D Convective (z=300R ^{1.4})	Summer deep convection	Other non-tropical convection
Rosenfeld Tropical (z=250R ^{1.2})	Tropical convective systems	

Sample Z-R relationships measured in Iowa (note the X-Y axis are switched between the graphs).

