Dead Zone	(c τ)/2
Range Resolution	$\Delta R=c \tau / 2$
PRF	Pulse Repetition Frequency
PRI	Pulse Repetition Interval = 1/PRF
Unambiguous range	$c /(2 P R F)$
Doppler shift	$f_{d}=\frac{2 V_{r}}{\lambda}$
Unambiguous velocity	$V_{\max }=\frac{\lambda P R F}{4}$
Doppler dilemma	$V_{\text {max }} R_{\text {max }}=\frac{c \lambda}{8}$
Definition of radar reflectivity $\eta\left(\mathrm{m}^{2} \mathrm{~m}^{-3}\right)$	$\eta=\sum_{\text {Unit Volume }} \sigma_{i}$
Radar reflectivity $\eta\left(\mathrm{m}^{2} \mathrm{~m}^{-3}\right)$	$\sigma_{t}=V \sum_{\text {Unit Volume }} \sigma_{i}=V \eta$
Definition of radar reflectivity factor $z\left(\mathrm{~mm}^{6} / \mathrm{mm}^{3}\right)$	$z=\sum_{\text {UnitVolume }} D^{6}$
Radar equation with incorporating simplified "lobing"	$P_{r}=\frac{G^{2} \lambda^{2} P_{t} \sigma}{64 \pi^{3} R^{4}} \times 16 \sin ^{4}\left(\frac{2 \pi h_{a} h_{t}}{\lambda R}\right)$
Radar equation with incorporating simplified "lobing" in region below first peak	$P_{r}=\approx \frac{4 \pi P_{t} G^{2} \sigma\left(h_{a} h_{t}\right)^{4}}{\lambda^{2} R^{8}}$
Definition of refractivity	$N=(n-1) \cdot 10^{6}$ where n is the index of refraction
Distance to horizon (linear model of refractivity)	$d=\sqrt{2 k a h}_{a}$ (Consistent Units) $d(k m)=4.12 \sqrt{h_{a}}(m)$ where $a=$ diameter of earth, h_{a} is the antenna height and $k=4 / 3$
Speed of radio wave	$c=\sqrt{\frac{\mu}{\varepsilon}}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}=c \sqrt{\frac{u_{r}}{\varepsilon_{r}}} \propto c \sqrt{\frac{1}{\varepsilon_{r}}}$

General Antenna Formulas

$G=$ Antenna Gain
$\lambda=$ Wavelength (m)
$A_{e}=\frac{G \lambda^{2}}{4 \pi} \quad$ Antenna Effective Area $\left(\mathrm{m}^{2}\right)$
$G=\frac{\pi^{2} k^{2}}{\theta \phi} \quad \theta, \phi$ are H and V beamwidths (radians), k antenna factor
$G=\frac{\pi^{2}}{\theta^{2}} \quad$ For circular antennas, θ beamwidth (radians)

Parabolic Dish Antennas

$\theta=\frac{70 \lambda}{D} \quad$ Beamwidth in degrees, $D=$ dish diameter । $\theta=\frac{\lambda}{D} \quad$ Beamwidth in radians

Radar Equation for Point Targets

$$
P_{r}=\frac{G^{2} \lambda^{2} P_{t} \sigma}{64 \pi^{3} R^{4}}
$$

P_{t} and P_{r} are transmitted and received power, σ is
the radar target cross sectional area, R is the
distance between target and transmitter, and G is
the antenna gain.

Radar Equation for Distributed Targets

$$
P_{r}=\frac{G^{2} \lambda^{2} P_{t} V \eta}{64 \pi^{3} R^{4}} \quad \begin{aligned}
& P_{t} \text { is the transmitted and received power, } \eta \\
& \text { is the radar target cross sectional area, } R \text { is } \\
& \text { the distance between target and transmitter, } \\
& \text { and } G \text { is the antenna gain. } V \text { is the radar } \\
& \text { pulse volume (see below) }
\end{aligned}
$$

Radar Pulse Volumes

$$
\begin{aligned}
& \begin{array}{l|l}
V_{1}=\pi \frac{R \theta}{2} \frac{R \phi}{2} \frac{h}{2} \text { (general) } & \begin{array}{l}
h=\text { pulse length, } \tau \text { is the pulse width, } \theta \text {, and } \phi \\
\text { are antenna beam widths. }
\end{array}
\end{array} \\
& V_{2}=\frac{\pi R^{2} \theta^{2} h}{8}(\text { symetric } \theta=\varphi) \\
& V_{3}=\frac{\pi R^{2} \theta \varphi}{8 \ln (2)} \frac{h}{2} \text { (symectric, Gaussian) } \\
& P_{r}=\left(\frac{G^{2} \lambda^{2} P_{t} \theta \phi c \tau}{1024 \ln (2) \pi^{2}}\right) \frac{\eta}{R^{2}}=C \frac{\eta}{R^{2}} \\
& \text { Radar equation for distributed targets using } \\
& \text { symmetric Gaussian antenna. } C \text { is the radar } \\
& \text { constant. }
\end{aligned}
$$

Attenuation of electromagnetic energy in the atmosphere. Solid curve is due to absorption by oxygen. Dashed curve is due to absorption by water vapor.

