Radar Equation for Distributed Targets

The radar equation for point targets (targets occupy a very small part of the sample volume) is:

$$
P_{r}=\frac{G^{2} \lambda^{2} P_{t} \sigma}{64 \pi^{3} R^{4}}
$$

Consider many point targets evenly distributed in the sample volume, and assume that the pulse length h is much smaller than the distance R. Let σ_{i} be the cross sectional area per unit volume (for some important targets we can compute this). The total backscatter cross sectional area from the sampling volume is then

$$
\sigma_{t}=V \sum_{\text {Unit Volume }} \sigma_{i}=V \eta
$$

where η is defined as the radar reflectivity. Its units are $\mathrm{m}^{2} \mathrm{~m}^{-3}$ or m^{-1} or cm^{-1}. Substitute this into the radar equation for point targets to find:

$$
\begin{equation*}
P_{r}=\frac{G^{2} \lambda^{2} P_{t} V \eta}{64 \pi^{3} R^{4}} \tag{1}
\end{equation*}
$$

Consider the pulse volume:

Substitute V_{3} and $h=c \tau$ into Equation 1 to find

$$
P_{r}=\frac{G^{2} \lambda^{2} P_{t} \theta \phi \eta h}{1024 \ln (2) \pi^{2} R^{2}}=\frac{G^{2} \lambda^{2} P_{t} \theta \phi \eta c \tau}{1024 \ln (2) \pi^{2} R^{2}}
$$

For a given radar $G, \lambda, P_{t}, \tau, \theta$ and ϕ are constant and one can group these and the numerical constants in a constant called the radar constant, and the expression becomes

$$
P_{r}=\left(\frac{G^{2} \lambda^{2} P_{t} \theta \phi c \tau}{1024 \ln (2) \pi^{2}}\right) \frac{\eta}{R^{2}}=C \frac{\eta}{R^{2}}
$$

