z, Z and Z-R Relationships

Think Back

Radar reflectivity h for a distributed target, is defined by the following

$$\boldsymbol{s}_{t} = V \sum_{\textit{Unit Volume}} \boldsymbol{s}_{i} = V \boldsymbol{h}$$

The units are $m^2 m^{-3}$ or m^{-1} or cm^{-1}

$$P_{r} = \left(\frac{G^{2}\boldsymbol{l}^{2}P_{t}\boldsymbol{q}\boldsymbol{f}\boldsymbol{c}\boldsymbol{t}}{1024\ln(2)\boldsymbol{p}^{2}}\right)\boldsymbol{h}^{2} = C\frac{\boldsymbol{h}}{R^{2}} \qquad \boldsymbol{h} = \frac{\boldsymbol{p}^{5}|\boldsymbol{k}|^{2}}{\boldsymbol{l}^{4}}z \qquad \boldsymbol{z} = \sum_{Unit \, Volume} D^{6}$$

Radar equation for distributed targets

Radar reflectivity

Radar reflectivity factor (mm⁶/mm³)

Combining these equations, we can write: $P_r = c_2 \frac{z}{R^2}$, and rearrange to get:

$$z = c_3 P_r R^2$$

 c_3 is the so-called *radar constant*. It has units mm⁶/m³ mW⁻¹ km⁻². The radar reflectivity factor z has a tremendous dynamic range so it is convenient to express it on a decibel scale with a reference $z = 1 \text{ mm}^6/\text{m}^3$

$$Z = 10\log_{10}\left(\frac{z \ (\text{mm}^6/\text{m}^3)}{1 \ (\text{mm}^6/\text{m}^3)}\right) \text{ with units dBZ}$$

Using this, we can write

$$z = c_3 P_r R^2$$
$$Z = C_3 + P_r + 20 \log_{10}(R)$$

where Z is measured in dBZ, $C3 = 10\log_{10}(c_3)$, P_r is measured in dBm, and R is in km.

Marshall-Palmer DSD.

Given a DSD one can compute a Z-R relationship. In practice, empirical relationships are used:

$$Z = AR^{b}$$

 $Z = 200R^{1.6}$ Marshall - Palmer or MP relationship

There are many relationship in use. The table below is from the NOAA ROC:

Table 1. Z-R RECOMMENDATIONS		
RELATIONSHIP	Optimum for:	Also recommended for:
Marshall-Palmer (z=200R ^{1.6})	General stratiform precipitation	
East-Cool Stratiform (z=130R ^{2.0})	Winter stratiform precipitation - east of continental divide	Orographic rain - East
West-Cool Stratiform (z=75R ^{2.0})	Winter stratiform precipitation - west of continental divide	Orographic rain - West
WSR-88D Convective (z=300R ^{1.4})	Summer deep convection	Other non-tropical convection
Rosenfeld Tropical (z=250R ^{1.2})	Tropical convective systems	

Sample Z-R relationships measured in Iowa (note the X-Y axis are switched between the graphs).

Problem. The figure below shows a drop size distribution measured with a disdrometer. It also shows least squares fit to the data. Assume there are no drops outside of the range 0.2-6 mm.

- (a) Estimate the number of drops per unit volume (i.e., in one cubic meter).
- (b) Compute the radar reflectivity factor Z. Supply the proper units.

Disdrometers

Optical

Impact (Joss-Waldvogel)

Video

Radar-type

