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1. Introduction

Measurements are important for quality assurance and process control, and to obtain process
information.  Three aspects will be covered in the Experimental Engineering class:

• Sensors-- fundamentals of sensors for mechanical and thermal quantities.
• Systems-- response and configuration.
• Experimental methods-- planning, acquisition, and analysis.

Quantities of interest include displacement, strain, temperature, pressure, force, torque, moment,
velocity, acceleration, volumetric flow rate, mass flow rate, frequency, time, heat flux, etc.

1.1 Definitions Commonly used in Sensors and Instrument

• Readability-- scales in analog instrument.
• Least Count-- smallest difference between two indications.
• Static Sensitivity-- displacement versus input, e.g., scale in oscilloscope (cm/mV), etc.
• Hysteresis-- measured quantity which depends on the history to reach that particular

condition; generally it is a result of friction, elastic deformation, magnetic, or thermal
effects.

• Accuracy-- deviation of a reading from a known input.
• Precision-- related to reproducibility of measurement.
• Error-- deviation from a known input, a measure of accuracy.
• Uncertainty-- data scatter, a measure of precision.

1.2. Calibration

Calibration involves a comparison of a particular instrument with respect to a known
quantity provided from (1) a primary standard, (2) a secondary standard with a higher accuracy
than the instrument to be calibrated, or (3) a known input source.

1.3. Standards

The National Institute of Standards and Technology (NIST) has the primary responsibility
to maintain standards for such quantities as length, time, temperature, and electrical quantities for
the US.

     Mass.     International Bureau of Weights and Measurements (Sevres, France) maintains
several primary standards, e.g., the kilogram is defined by the mass of a particular platinum-
iridium bar maintained at very specific conditions at the Bureau.

    Time.     One second has been defined as the time elapsed during 9,192,631,770 periods of
the radiation emitted between two excitation levels of the fundamental state of cesium-133.  The
Bureau Internationale de l'Hueure (BIH) in Paris, France maintains the primary standard for clock
time.  The standard for cyclical frequency is based on the time standard, 1 Hz = 1 cycle/second, or
1 Hz = 2π radian/second.

    Length.     One meter is defined as the length traveled by light in 3.335641 x 10-9 second
(based on the speed of light in a vacuum).

    Temperature.     The absolute practical scale is defined by the basic SI unit of a Kelvin, K.
The absolute temperature scale, Kelvin, is based on the polynomial interpolation between the
equilibrium phase change points of a number of pure substances from the triple point of the
equilibrium hydrogen (13.81 K) to the freezing point of gold (1337.58 K).  Above 1337.58 the
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scale is based on Planck's law of radiant emissions.  The details of the temperature standard are
governed by the International Temperature Scale-1990.

    Electric Dimensions; volt (V), ampere (A), and ohm (        Ω     )   .     One ampere absolute is defined
by 1.00165 times the current in a water-based solution of AuN2 that deposits Au at an electrode at
a rate of 1.118 x 10-5 kg/s.  One ohm absolute is defined by 0.9995 times the resistance to current
flow of a column of mercury that is 1.063 m in length and has a mass of 0.0144521 kg at 273.15
K.  The practical potential standard makes use of a standard cell consisting of a saturated solution
of cadmium sulfate.  The potential difference of two conductors connected across such a solution is
set at 1.0183 V at 293 K.

Laboratory calibration is made with the aid of secondary standards, e.g. standard cells for
voltage sources and standard resistors, etc.

1.4. Dimensions and Units

Fundamental dimensions are: length, mass, time, temperature, and force.  Basic SI units
are: m, kg, s, A, K, cd (candela, luminous intensity), and supplemental units are rad (radian, plane
angle) and sr (steradian, solid angle). There are many derived SI units, for example, N, J, W, C
(Coulomb = A • s), V (W/A), Ω(V/A), Hz, W/m2, N/m2 (Pa), Hz (1/s), etc.  Conversion factors
between the SI and US engineering units are fixed, e.g. 1 in. = 0.02540005 m, 1 lbm
=0.45359237 kg., (oC) = (K) - 273.15, (oF) = (K) -459.67, etc.

2. General Measurement System

Most measurement systems can be divided into three parts:

Stage I  -- A detector-transducer or sensor stage,
Stage II -- An intermediate stage (signal conditioning), and
Stage III-- A terminating or read-out stage ( sometimes with feedback signal for control).

The dynamic response of a generalized measurement system can be analyzed by a mechanical
system.  A schematic of the generalized measurement system is shown below.

INDICATOR

RECORDER

PROCESSOR

CONTROLLER

TRANSDUCER
 SIGNAL

 CONDITIONER SENSOR

CALIBRATION CONTROL
STAGE

TO PROCESS

STAGE I STAGE II STAGE III

3. Types of Input Quantities

• Time relationship
Static-- not a function of time.
Dynamic-- steady-state, periodic, aperiodic, or transient (single pulse, continuing, or
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random).

• Analog or digital
Analog-- temperature, pressure, stress, strain, and fluid flow quantities usually are analog
(continuous in time).
Digital-- quantities change in a stepwise manner between two distinct magnitudes, e.g.,
TTL signals.

The time relationship is important in selecting an instrument adequate for the required time
response, and proper but different signal conditioners are usually needed depending on the input
signal is digital or analog.

4 . Error Classification

Three types of error can be identified: systematic, random and illegitimate errors.
Systematic errors are not susceptible to statistical analysis, and generally result from calibration
errors, certain type of consistently recurring human error, errors of technique, uncorrected loading
errors, and limits of system resolution. Random or accidental errors are distinguished by lack of
consistency.  They involve errors stemming from environmental variations, certain type of human
errors, errors resulting from variations in definition, and errors derived from insufficient definition
of the measuring system. Illegitimate errors are those should not exist-- blunders or mistakes,
computational errors, and chaotic errors.  Error analysis is necessary for measurements.

5 . Calibration  (Output versus Known Input)

    Static Calibrations

Static ⇔ independent of time
Only the magnitude of the known input is important in static calibrations.

    Dynamic Calibrations

Time dependent variables are measured in dynamic calibrations.

    Calibration Curve

Usually plotted in terms of output versus input of known values or standards.
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5.1 Static Sensitivity

K = K(x1) = 




dy

dx   
x = x1

 

5.2 Range

Input range : νi = x(max) - x(min)
Output range: νo = y(max) - y(min)

5.3 Accuracy

Absolute error, ε = true value - indicated error

Relative accuracy,  A = 1 - 
ε

true value  

5.4 Sequence Calibration

Hysteresis error, εh;  εh = (y)upscale - (y)downscale 

5.5 Random Calibration

Linearity Error
Sensitivity and Zero Errors
Instrument Repeatability

6 . Experimental Test Plan

A well thought-out experimental test plan includes
(1) An identification of pertinent process variables and parameters.
(2) A measurement pattern.
(3) A selection of a measurement technique and required equipment.
(4) A data analysis plan.

• Random tests-- a random order set to the applied independent variables.
• Replication-- an independent duplication of a set of measurements under similar

controlled conditions.
• Concomitant Methods-- two or more estimates for the result, each based on a

different method.

7 . Measurement Overview

The overall planning of experiments should include
(1) Objective
(2) Plan -- to achieve the objectives
(3) Methodology
(4) Uncertainty Analysis
(5) Costs
(6) Calibration
(7) Data Acquisition
(8) Data Analysis
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I . Statistical Analysis

I.1 Introduction

Variations are usually observed in engineering measurements repeatedly taken under
seemingly identical conditions.  Source of the variation can be identified as follows:

     Measurement System     
Resolution and Repeatability

     Measurement Procedure and Technique
Repeatability

     Measured Variable   
Temporal variation and spatial variation

Statistical analysis provides estimates of
(1) single representative value that best characterizes the data set,
(2) some representative value that provides the variation of the data, and
(3) an interval about the representative value in which the true value is expected to be.

Repeated measurements of x will yield a most probable value "x
_
 ", and the true value x' will lie in

the interval x
_
  - ux and x

_
  + ux, or

x
_

  ± ux (P%)

with some probability level (or confidence level), i.e., at P(%)

I.2 Statistical Properties of a Single Point Measurement

Statistical properties of a single-point measurement can be illustrated with the example of
calibration of an instrument. Let's consider the calibration of a pressure gauge using a dead-weight
tester and 20 readings are obtained. The test set-up is shown:

Figure 1. Schematic of a Pressure Calibration Set-Up.

The data can be grouped into 5 groups, e.g.
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    Range of Group (kPa)         No. in the Group
9.8-9.9 3
9.9-10.0 4
10.0-10.1 8
10.1-10.2 3
10.2-10.3 2

The histogram is plotted in the following:

9.8 9.9 10.0 10.1 10.2 10.3
0

2

4

6

8

10

Figure 2. Histogram.

When a larger sample is available, the probability density function (pdf) of the distribution can be
defined in the following manner:

f ∆x =  
No. of Readings in ∆x
Total No. of Readings  

As the total number of readings increases and ∆x decreases, f then approaches a continuous
function:

Probability Density Function

Cumulative Distribution Function

PRESSURE

Figure 3. Schematic Diagrams of Probability Density Function and Cumulative Distribution
Function.
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The mathematical expression for the cumulative distribution function (F) is as follows:

P (a<x<b) = ∑ fi ∆xi

F (a) = P (p<a) = ⌡⌠
-∞

a

 f dp 

A probability distribution function can be characterized by its moments.  Suppose n
readings are given, e.g. x1, x2, .... and xn, then

     Mean value   x' =  
lim
n→∞ 

∑ xi
n   (true mean) 

x  =  
∑ xi

n  (finite sample mean) 

    2nd moment   m2 =  
lim
n→∞  

∑ (xi- x')2

n  

Variance σ2 =  
lim
n→∞ 

∑ (xi-x')2

n  

Sample Variance S2
x  =  

Σ −
−

( )xi x

n

2

1

Standard Deviation σ

Sample Standard Deviation Sx

    3rd moment    (measure of symmetry, skewness) m3 =  
lim
n→∞  

∑ (xi- x')3

n  

    4th moment    (measure of peakness, kurtosis) m4 =  
lim
n→∞  

∑ (xi- x')4

n  

Several mathematical functions are often used as a pdf, for example, the two-parameter
functions of the normal (or Gaussian) distribution function and the log normal distribution
function, e.g., see Table 4-2 Textbook (p. 112) for examples of distribution functions.

In engineering applications, the Gaussian distribution function can be used to describe the
distribution function:

p (x) = 
1

σ (2π)1/2
  exp 







- (x - x')2

2 σ2
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where x' and σ can be estimated from x  and Sx of a finite sample size of n.

The calibration of the pressure gauge example has

x  = 9.985 (or 10.0) and

Sx = 0.1182 (or 0.12).

If the distribution function is exactly the Gaussian distribution, then 68 % of the readings fall in x
± Sx, 95 % in x  ± 2Sx, and 99.7 % in x  ± 3Sx. Examining the histogram, one observes that 75
% of the readings are in the range of 9.98 ± 0.12 kPa, and 90 % of the readings are in the range of
9.98 ± 0.24 kPa. Questions then arise as to how close the distribution follows a Gaussian or Error
distribution. To test the "normality" of a distribution function, the χ2 test may be performed.

I.3 Test of Data Outliers

    Chauvenet's Criterion    

First let's examine a way of rejecting "bad " data by using Chauvenet's Criterion. It states
that a reading may be rejected if the probability of obtaining the particular deviation from the mean
is less than 1/(2n). The maximum allowable deviation, dmax, can be obtained from the normal
(Gaussian) distribution function and reject xi's which lie outside the dmax range.

|xi  - x | >  dmax

As an example, let's consider n = 3.  The CDF value for n = 3 is obtained from 1- (1/2n)/2, i.e., it
assumes a value of 0.9167; the corresponding departure from the mean based on the standard
deviation (dmax/σ) is 1.38.  Similarly one can obtain the "multiplier" values (to standard deviation)
to be 1.73 for n = 6, and 1.96 for n = 10, etc. (as shown below).

n 3 6 10 25 50 100 500 1000
dmax/σ 1.38 1.73 1.96 2.33 2.57 2.81 3.29 3.48

The multiplier value can also be obtained based on different assumptions.

    Student's t Distribution

The data point outside the 99.8% of the population based on Student's t Distribution is
considered an outlier.  Therefore, tν,99.8 is to be used as the multiplier value as discussed in
Textbook.

     Modified Thompson       τ       Technique   
(Measurement Uncertainty, ANSI/ASME, 1986; Wheeler and Ganji, 1995)

n 3 5 7 10 15 20 25 30 35
dmax/σ 1.150 1.572 1.711 1.798 1.858 1.885 1.902 1.911 1.919

    Tchebychev Inequality    

It should be mentioned that when all else fails for the test, one can apply the Tchebychev's
inequality.  The result of this analysis is "distribution free."  It states that for any distribution
having a finite mean and variance:



12

P (|x - x | ≤ k Sx) > 1 - k-2, or
P (|x - x | ≤ Sx) > 0
P (|x - x | ≤ 2 Sx) > 0.75
P (|x - x | ≤ 3 Sx) > 0.89, etc.

To yield a 5% uncertainty, it requires that

P (|x - x | ≤ 4.5 Sx) > 0.95

Thus, the multiplier is 4.5 based on Tchebychev's inequality to reject data outside the 95% of the
sample, and 22.36 outside the 99.8%.   Since the criterion is excessively broad, there are attractive
gains to be made by treating whether it is reasonable to assume a particular distribution function is
satisfactory.

I.4 Goodness-of-Fit:  Chi-squared Test

It should also be noted that the χ2 test is only one of the many approaches for testing the
normality of a distribution function.  The procedure of the test follows.

Given: m readings of x1, x2, ............., xm

(1) Group the m readings in ranges to yield n groups and n ≥ 4, and preferably more than 5
readings in each group.  Let's identify noi as the number of readings in group i.

(2) Compute nei, the expected number of readings in group i should the distribution follow a
Gaussian distribution.  The mathematical expression is

nei = m Pi  = m ⌡⌠
xi-1

xi

 p(x) dx   (or the integration over the range of group i) .

(3) Compute the χ2 values for the distribution:

χ2  =   
∑ (noi - nei )2

nei
   (summation over the n groups) 

(4) Determine the number of degrees of freedom:

ν = n - 3

where 3 is used in the calculation of ν to account for x
_
  and Sx, and "grouping" in estimate

of uei, i.e., the constraint is 3 not 2.

(cf., Doebelin, E.O., 1983, Measurement Systems Application and Design, 3rd Ed., p. 53,
McGraw-Hill, or Beckwith, T.G., Buck, N.L., and Maraugoui, R.D., 1982, Mechanical
Measurements,  3rd Ed., Addison-Wesley, p. 284.)

(5) Determine if the χ2 value falls in the limit given by 5 % and 95 %, or find P(χ2) for the
distribution function p(x) to see if it is within the limits.  The table in the handout illustrates
the χ2 values as a function of f for different probability levels.
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Example 1. Perform the χ2 test for the temperature measurement using the data set given.

T(K) 1850 1900 1950 2000 2050 2100
Occurrence 1 9 6 18 10 2

Solution:

•  First, determine mean and standard deviation of the data, x  = 1985.9 K, Sx = 60.2 K

•  Second, calculate the χ2 values:

Group T-Range no z-Range nei (no-ne)i2/nei
1 -∞ to 1925 10 -∞ to -1.01 7.185 1.103
2 1925 to 1975 6 -1.01 to -0.18 12.530 3.403
3 1975 to 2025 18 -0.18 to 0.65 14.426 0.885
4 2025 to ∞ 12 0.65 to ∞ 11.859 0.002

Thus, χ2 = 5.393.  Note that a transformation was used in the above table; namely,

z =  
x - x'

σ
 

where x  and Sx are the best estimates of x' and σ.

nei = m Pi  = m ⌡⌠ p(x) dx   =  m ⌡⌠  p(z) dz nei = m 










⌡⌠
-∞

 zi+∆zi

 p(z )   dz   -     ⌡⌠
-∞

 z i

 p(z) dz  

nei = m [F(zi+∆zi) - F(zi)], Also note that F(-|z|) = 1 - F(z)

•  Third, compute the number of degrees of freedom, ν = n - 3 = 1
•  Fourth, consult the χ2 table for normality.

For this particular example, the interpolation shows that P = 0.022, suggesting that the distribution
is not likely a Gaussian distribution, following the 5-95 criterion.  The 10-90 criterion can be used.

I.5 Number of Measurements Required

Precision Interval, CI

CI = x' - x
_

  = ± tv, 95  
Sx

N1/2
  (95%) 

where Sx is a conservative estimate based on  prior experience, manufacturer's information.  The
deviation from the mean usually is symmetric, thus one may define d = CI/2 or

N ≈ 





 
t  v  ,95 S x

d    
2
 (95%) 

It is suggested that when the precision interval is considerably smaller than the variance, the value
of N required will be large, say N > 60, and the t estimator will be approximately equal to 2.  A
trial and error method is required because t estimator is a function of the degrees of freedom in the
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sample variance.
One approach to estimate the sample size is to conduct a preliminary small number of

measurements, N1, to obtain an estimate of the sample variance, S1.  Then S1 is used to estimate
the total number of measurements, NT,

NT ≈ 



 

t N-1, 95S1
d    

2
(95%)

 

(t N-1,95 should be used)

I.6 Student's t distribution

Small sample size introduces the bias error.  This bias error can be quantified by

[x
_
  - t Sx

_
  ] < x' <  [x

_
  + t Sx

_
  ]

where t is the student's t distribution.  The student's t distribution is defined by a relative-
frequency equation f(t) :

f(t) = F0 








1   +  
t2

ν  

(ν +1)/2
 

where F0 is the relative frequency at t = 0 to make the total area under f(t) curve equal to unity, and
ν is the number of degrees of freedom. When t → ∞, student's t distribution approaches the normal
distribution.  Table 4.4 (cf., p. 119 of Textbook) summarizes the t - estimator.

Student t distribution can also be interpreted as an estimate of the variation from the mean.
For a normal distribution of x about some sample mean, one can state that

xi = x
_

  + tv,P Sx   (P%)

where tv,P is obtained from a new weighting function for finite sample set which replaces the "z-
variable" in our earlier discussion of the Gaussian distribution.  The standard deviation of the
means represents a measure of the precision in a sample mean.  For example, the range over which
the true mean value may lie is at probability level P is given by

x
_

  ± tv,P Sx
_
   (P%) 

where the standard error is defined

Sx
_   =  

Sx

n
 

Graphically, it can be shown as

g( x )

f ( x )

x' x, or x



15

I.7 Least Squares-- a Multiple Point Correlation

Quite often a range of operating condition is desired, for example, the calibration of an
instrument over the range of operation.  The previous section only deals with a single point
statistical analysis.  The least squares analysis is introduced in this section.  Calibration of a
pressure gauge or mass flow meter (critical orifice meter) is used to illustrate the least squares
analysis.

Flow

CFO

Critical Flow Orifice

To present the data, often a single curve is desired and estimate of the uncertainty of a measurement
when this instrument is used needs to be specified. To accomplish this, regression techniques may
be used. We will discuss the linear regression here.

Suppose that the data can be represented by a linear function,

y = a + b x

Let's define a linear calibration line of

yc = a + b x

To find a best estimate of a and b, and to determine the uncertainty, one may define a function of
the sum of the squares of the deviation between the data and the calculated value:

Syx = Σ (yi - yci)2 = Σ ( )y i -  (a + b xi)  2 , where Σ is over n data points.

To minimize the uncertainty, one may take a derivative of S

dS =  
∂S
∂a  da +  

∂S
∂b  db

Let  
∂S
∂a  =  

∂S
∂b  = 0, or

∂S
∂a  =  -2 Σ [yi - (a + b xi)] = 0;  

∂S
∂b  =  -2 Σ xi [yi - (a + b xi)] = 0.
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-2 ∑
i

 [yi - (a + bxi)]  = 0;   2 ∑
i

{xi [yi - (a + bxi)]}  = 0

∑
i

yi  - (n a + b ∑
i

xi ) = 0 ;   ∑
i

xiyi  - a ∑
i

xi  - b ∑
i

x2
i    = 0

a =  
1
n ( ∑

i

yi - b ∑
i

xi ) ;     ∑(xi yi)  - a (∑xi ) - b∑x2
i    = 0

Therefore, one obtains

   a   =   y
_

 -  bx
_

   

where y
_

  =  
Σ yi
n   and x

_
  =  

Σ xi
n   .  Now consider

∑xi (∑yi - n a - b ∑xi)  - n ∑(xi yi)  + n a ∑xi  + n b ∑x2
i   = 0, or

∑xi ∑yi  - b (∑xi )2 - n ∑(xi yi)  + n b (∑x2
i  ) = 0

 b = 
n∑ (xi yi) - (∑ xi)(∑ yi)

n∑x2
i
 - (∑ xi)2

   

The variance of the estimate (or standard error of the fit) is

Syx2 = 
Σ  (yi - yci )2

n   -   2   

Note that n-2 appears in the equation is due to the degrees of freedom is reduced by 2 (a and b are
determined).  It can be shown that

 Syx2 = 
n-1
n-2 (Sy2 - b2 Sx2) 

where Sx2 = Σ (xi - x
_

 )2 /(n-1) and Sy2 = Σ (yi - y
_

 )2 /(n-1).

    Correlation Coefficient   

r2 = 1 - 
S2

yx

S2
y
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where S2
y  = 

1
n-1

∑
i  =  1

n

  (y i  -   y
_
) 2

The correlation coefficient can also be written as  r =
 Σ   ( x i  -   x )(y i  -   y)  

  (n-1)  Sx    Sy      =  b 
Sx
Sy

 

The correlation coefficient is bounded by ± 1, with perfect correlation having r = 1 or -1 (y
decreases with x).  For 0.9 < r < 1.0 or -1.0 < r < -0.9, a   linear   regression can be considered as a
reliable relation between y  and x.  When r = 0 the regression explains nothing about the variation
of y versus x (a horizontal line).

Standard Error of b is

Sb = 
Syx

Sx(n-1)1/2
 

    Slope of Fit   

Sb = Syx 
n

n ∑
i  =  1

n

x2
i   -   ( ∑

i  =  1

n
xi)2

 

Example 2.  The calibration of a pressure gauge using a dead weight tester yields
i 1 2 3 4 5 6

x (pind,kPa) 20 30 50 70 80 100
y (pact,kPa) 30 50 60 80 100 110

Find a least-squares -fit for the above data set.

Solutions:
Σ xi2 = 25100, Σ yi2 = 35500, Σ xi yi = 29700

b=0.9858, y=71.67, x =58.33, a= y-b x =14.17 (or 14.16 from direct calculation), r=0.9857

pc = 14.17 + 0.9858 pg

t-estimator can be used to establish a precision or confidence interval about the linear regression.
This interval can be expressed as ± t4,95 Syx when 95% interval is used.  For the example
considered,  t4,95 = 2.770 and Syx = 5.75.  Thus, the least-squares-fit can be expressed as

pc = 14.17 + 0.9858 pg ± 15.93 (kPa)

II. Uncertainty Analysis

II.1 Introduction
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Systematically quantifying error estimates - uncertainty analysis.
Uncertainty in Experiments ⇔ Tolerance in Design.

II.2 Measurement Errors

Bias Errors

Precision Error

x

Bias
Error

x'

Std
Dev.

Statistical representation of the measurements can be given by

x' =  x
_

  ± ux  (P%)

where ux is the uncertainty of the data set.

II.3 Error Sources

• Calibration errors
• Data acquisition errors
• Data reduction errors

3.1 Calibration Errors

Elemental errors can enter the measurement system during the process of calibration.  There
are two principal sources : (1) the bias and precision errors in the standard used in the calibration,
and (2) the manner in which the standards is applied.  Table 5.1 of Textbook summarizes the
calibration sources.

3.2 Data Acquisition Errors

Errors due to the actual act of measurement are referred to as data acquisition errors.
Power settings, environmental conditions, sensor locations are some examples of data acquisition
errors.

3.3 Data Reduction Errors

The errors due to curve fits and correlations with their associated unknowns are known as
the data reduction errors.  Table 5.3 summarizes the error source group.

II.4 Bias and Precision Errors
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4.1 Bias Error

Statistical analysis can not discover the bias error; estimates of bias errors can be made by
(1) Calibration
(2) Concomitant methodology
(3) Inter-laboratory comparisons
(4) Experience

4.2 Precision Error

Precision error is affected by
a. Measurement System-- repeatability and resolution
b. Measurand-- temporal and spatial variations
c. Process-- variations in operating and environmental conditions
d. Measurement Procedure and Technique-- repeatability

II.5 Uncertainty Analysis: Error Propagation

Consider a measurement of measured variables, x, which is subject to k elements of error,
ej, j = 1, 2, . . . , k.  The root-sum-squares method (RSS) estimates the uncertainty in the
measurement, ux, to be

ux = ± e2
1  + e2

2   +   .   .   .   +   e 2
k ei : elemental error

ux  = ± ∑
k =  1

K

e2
k (P%)

A general rule is to use the 95% confidence level throughout the uncertainty calculations.

5.1 Propagation of Uncertainty to a Result

Examples : • Normal stress derived from force and cross-sectional area
measurements
σ = f (F, A)

       • Surface area derived from measured diameter

    Example   Measured diameter of a quarter yields a mean of 24 mm and a standard deviation of
1.2 mm; i.e., x

_
  = 24 mm, Sx = 1.2 mm.  Find the expected mean area of the quarter.

Solution:

Statistically, the true mean is

 A
_

  = ⌡
⌠

-∞

∞

πD2

4   P(D) dD = 
π
4 ⌡⌠

-∞

∞

D2  P(D) dD; where P(D) is the pdf

whereas
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x' = ⌡⌠
-∞

∞

 x P(x) dx   

σ2 = ⌡⌠
-∞

∞

(x - x')2  P(x) dx

Consider  y = f(x)  ,  and confidence interval ± t Sx
_
  

x' = x
_

  ± t Sx
_
   ; x

_
  - t Sx

_
  < x' < x

_
  + t Sx

_ 

y
_

  ± δy = f(x
_

  ± t Sx
_ )  = f(x

_
 ) ± 













dy

dx x
_

 
t Sx

_
 + 

1
2






d2y

dx2 x
_(t Sx

_ ) 2  +   .   .   .  

Define

δy = 




dy

dx x
_
 
 t Sx

_
  + 

1
2





d2y

dx2 x
_(t Sx

_) 2 + . . .

First order approximation, δy ≈ 




dy

dx x
_
 
 t Sx

_
  

Thus, the precision interval is 



dy

dx x
_
 
 t Sx

_
  

In general, errors contribute to the uncertainty in x, ux, is related to the uncertainty in the estimate
of resultant y,

u y = 




dy

dx x
_ ux  

The above analysis applies to finite sample size when the distribution function is not known and
student's t- distribution is used to approximate the distribution.

Consider a result, R, is a function of L independent variables:
R = f1 (x1, x2, . . . , xL)

The best estimate of true mean value, R',

R' = R
_

  ± uR   (P %)
where

R
_

  = R
_

 (x
_

1, x
_

2,  . . . , x
_

L)  = f1 (x
_

 1, x
_

 2,  . . . , x
_
 L)

and the uncertainty in R
_

  is
uR = f2 (ux1, ux2, ux3, . . . uxL)

uR = ± 
∑

i  =  1
L(θiuxi)2        (P%)      Kline-McClintock Second Power Law

where θi = 




∂R

∂xi
  

xi = x
_

 i

θi is known as the sensitivity index
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II.6 Design-Stage Uncertainty Analysis

ud = u2
0

 + u2
c
 

u0: zero-order uncertainty of the instrument

u0 = ± 
1
2  resolution (95%)

An arbitrary rule, shown above, assigns a numerical value to u0 to one-half of the instrument
resolution with a probability of 95%.

uc: manufacturer's statement concerning the instrument error uc may have more than one elemental
error, for example, due to linearity and repeatability of the instrument.  (Example 5.2 of Textbook)

uc = ∑
k =  1

K

 e2
k
 

Multiple Instruments - Example 5.3 (transducer and DMM)

Pressure
Vessel

DMM

PS

T

Example
Design Stage Uncertainty of Pressure Measurements

Expected Pressure: 3 psi

Transducer

Range:  ± 5 psi
Sensitivity: 1 V/psi
Input Power: 10VDC ± 1 %
Output: 5V
Linearity: within 2.5 mV/psi over range
Repeatability: within 2 mV/psi over range
Resolution: negligible

DMM

Resolution: 10 µV
Accuracy: within 0.001% of reading

Analysis:
Assumptions - 95% probability for the values specified

RSS applicable

    Voltmeter   

(ud)E = ± (u0)2
E

 + (uc)2
E

 

(u0)E = ± 5 µV (resolution)

(uc)E = ± (3 psi) (1V/psi) x 10-5 = ± 30 µV
(ud)E = ± 30.4 µV = ± 30 µV

    Transducer   
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(uc)p = e2
1

 + e2
2
  

e1 = 2.5 mV/psi x 3 psi (linearity)
e2 = (2 mV/psi) (3 psi) (repeatability)

(uc)p = ± 9.60 mV

(u0)p ≈ 0 V/psi
(ud)p = ±  9.60 mV or (ud)p = ± 0.0096 psi

    Combined Uncertainty    

ud = (ud)2
E

 + (ud)2
p
 

ud = ± 9.60 mV
ud = ± 0.0096 psi (95%)
ud = ± 0.010 psi

II.7 Multiple - Measurement Uncertainty Analysis

Three sources of errors (elemental) are
• calibration (i = 1)
• data acquisition (i = 2)
• data reduction (i = 3)

For multiple measurements, the procedures for uncertainty analysis are
(1) identify the elemental errors,
(2) estimate the magnitude of bias and precision error in each of the elemental errors,

B and P,
(3) estimate any propagation of uncertainty through to the result.

Source Precision Index, Pi (i = 1, 2, 3)

Pi = Pi
2
1

 + Pi
2
2

 +   .   .   .  +  P i
2
k
 + i = 1, 2, 3

Measurement Precision Index, P

P = P2
1

 + P2
2

 + P2
3
 

Source Bias Limit, Bi (i = 1, 2, 3)

Bi = ∑
j  =  1

K

Bi
2
j
 i = 1, 2, 3

B = B2
1

 + B2
2

 + B2
3
 

The measurement uncertainty in x, ux, is a combination of B and P:

ux = B2 + (tν,95 P)2 (95%)

    Degrees of Freedom,        ν    

The degrees of freedom of Pi and Bi are different.  The Welch-Satterthwaite formula is
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used (cf., Textbook), stateing that

ν = 






∑

i  =  1
3 

∑

j  =  1
KP2

ij

2

∑

i  =  1
3   

∑

j  =  1
K (P4

ij
/νij)

 

i = 1, 2, 3 the three sources of elemental errors
j is referred to each elemental error within each group, νij = Nij - 1

    Example   Estimate the precision and bias Errors (i = 2) during the data acquisition
summarized below.

Solution:

Force Measurements - Load Cell
Resolution: 0.25 N
Range: 0 to 200 N
Linearity: within 0.20 N over range
Repeatability: within 0.30 N over range

        n              F(N)             n              F(N)     
     1  123.2      6  119.8
     2  115.6      7  117.5
     3  117.1      8  120.6
     4  125.7      9  118.8
     5  121.1     10  121.9

Precision Error:

F
_

  = 120.1 [N] SF = 3.04 [N] Pij = 
SF

N1/2
  = 0.96 [N]

Bias Error:
Elemental errors due to instruments are considered to be data acquisition source error, i =

2.  Since the information as to the statistics used to generate the numbers, linearity and repeatability
must be considered as bias errors.

e1 = 0.20 N e2 = 0.30 N

B22 = e2
1

 + e2
2
  = 0.36 N

In the absence of specific calibration data, manufacturer specifications are considered as bias errors
contributing to the data acquisition source.

    Example   Estimate the data reduction errors for the data set below

Solution:

LVDT measurements - Linear Regression (Least Squares)

    x(cm)        y (V)                      y       c       - y       i       
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  1.0    1.2 -0.14
  2.0    1.9  0.20
  3.0    3.2 -0.06
  4.0    4.1  0.08
  5.0    5.3 -0.08

Analysis:

    Least Squares   

yc = 0.02 + 1.04x [V]

 r = 0.9965

    Precision Index    

Sy
2
x
  = 

4
3 (S2

y
 - b2S2

x
)  = 0.02533; Syx = 0.159

P31 = 0.159, or P31 = 0.16

ν = 5 - 2 = 3  (number of degrees of freedom); t3,95 = 3.182

    Correlation    
yc = 0.02 + 1.04x ± Syx  t3,95

yc = 0.02 + 1.04x ± 0.50 [V]     (95%)

6543210
1

2

3

4

5

6

x (cm)

y 
(V

)

y = 0.02 + 1.0400 x ± 0.50

    Example     Data Reduction Error (Error Propagation)
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T P Rigid Container

Pressure Measurements

   Accuracy: 1%, Np = 20
   p = 2253.91 psfa (lb/ ft  absolute)
   Sp = 167.21 psfa

Temperature Measurements

   Accuracy: 0.6  R, NT = 10
   T = 560.4  R, ST = 3.0  R

Known:      Ideal Gas  R = 54.7 (ft-lb/lbm-oR)

Find:  Density

Solution:

Ideal Gas EOS  ρ
_

  = 
p
_

 RT
_  = 0.074 lbm/ft3

It is noted that the uncertainty in the evaluation of the gas constant is on the order of ± 0.06 ft-
lb/lbm-˚R (or ± 0.33 J/kg - K) due to the uncertainty of molecular weight.  This error is neglected.

    Pressure   
(B21)p = (0.01) (2253.91) = 22.5 psfa (instrument bias error)

(P2)p = 
Sp

201/2
  = 37.4 psfa

νp = 20 - 1 = 19 (number of degrees of freedom)

    Temperature   
(B2)T = 0.6 ˚R

(P2)T = 0.9 ˚R




ST

101/2
 

νT = 10 - 1 = 9

    Error Propagation    

R' = R
_

  ± uR R': true reading; R
_

  : sample averaged reading

 R
_

  = f1 = ( x
_

 1,  x
_

 2, x
_

 3,  . . .,  x
_
 L)

uR = f2 (Bx1, Bx2, . . . , BxL;  Px1, Px2,  . . ., PxL)

PR = ± ∑
i  =  1

L

(θi Pxi)2 Resultant Precision Index
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BR = ± ∑
i  =  1

L

(θi Bxi)2 Resultant Bias Limit

  u R   =   B2
R

 + (tν ,  95 PR )2   (95%)

where the resultant number of degrees of freedom is

 ν  R   =  

∑
i  =  1

L

(θi Pxi)2

∑
i  =  1

L

( )θ i Px i 4/νxi

   

θi = 




∂R

δxi x
_ 

i





∂ρ

∂T  
2
 = 





-

p

RT2
 
2
 = (1.3112 x 10-4)2 = 1.72 x 10-8





∂ρ

∂P  
2
 = 





1

RT  
2
 = (3.26 x 10-5)2 = 1.06 x  10-9

p = 



∂ρ

∂T (P)T
2

 + 



∂ρ

∂P PP
2
  = 0.0012 lbm/ft3;      (PT = 0.9)    (PP = 37.4)

B = 









∂ρ

∂T  BT
2

 + 









∂ρ

∂P  BP
2
  = 0.0007 lbm/ft3

ν = 
















∂ρ

∂T  PT
2

 + 









∂ρ

∂P  PP
2     2

 





∂ρ

∂T PT
4
/ ν  T  + 









∂ρ

∂P  PP
4  

/  ν  P

 

ν = 
(0.0012)4

(1.312 x 10-4 x 0.9)4

9  + 
(3.26 x 10-5 x 37.4)4

19

   =  17.83 = 18

t18, 95 = 2.101
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up = B t P2
1895

2+ ( ), = 0.0026 lbm/ft3

ρ' = 0.074 ± 0.0026 lbm/ft3 (95%)

II.8 ASME/ANSI 1986 Procedure for Estimation of Overall Uncertainty

1. Define the Measurement Process

objectives; independent parameters and their nominal values; functional relationship; test
results

2. List All of the Elemental Errors

calibration; data acquisition; data reduction

3. Estimate the Elemental Errors

bias limits; precision index (use the same confidence level)

4. Calculate the Bias and Precision Error for Each Measured Variable

RSS

5. Propagate the Bias Limits and Precision Indices All the Way to the Result

RSS (Example of Density Calculation)

6. Calculate the Overall Uncertainty of the results

RSS

GUIDELINE FOR ASSIGNING ELEMENTAL ERROR

Error Error type

Accuracy Bias

Common-mode voltage Bias

Hysteresis Bias

Installation Bias

Linearity Bias

Loading Bias

Spatial Bias

Repeatability Precision

Noise Precision

Resolution/scale/quantization Precision

Thermal stability (gain, zero, etc.) Precision
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LECTURE NOTES II-- SENSORS

     Section        Description

1. Introduction

2. Metrology

3. Displacement

4. Load Cell

5. Acceleration

6. Temperature

7. Pressure

8. Torque and Power Measurements
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1 . Introduction

Transducers - electromechanical devices that convert a change in a mechanical quantity such
as displacement or force into a change in electrical quantity.  Many sensors are used in transducer
design, e.g., potentiometer, differential transformers, strain gages, capacitor sensors, piezoelectric
elements, piezoresistive crystals, thermistors, etc.  We will cover the metrology in the lecture and
followed by the discussion of sensors.

2 . Metrology

The science of weights and measures, referring to the measurements of lengths, angles,
and weights, including the establishment of a flat plane reference surface.

2.1 Linear Measurement

    Line        Standard      defined by the two marks on a dimensionally stable material.

    End        Standard      the length of end standards is the distance between the flat parallel end faces.

     Gauge        Block      length standards for machining purposes.
 Federal Accuracy Grade; combination of gauge blocks yields a range of length from 0.100
to 12.000 in., in 0.001 in. increments.

    Vernier Caliper   

Consult Figs. 12.2-12.4, Textbook

     Micrometer   

Consult Fig. 12.5, Textbook

    Tape Measure     measuring tape up to 100 ft, uncertainty as low as 0.05%; hand measuring tools are
commonly used for length measurements.

3 .  Displacement Sensor

Potentiometer, Differential Transformer, Strain Gage, Capacitance, Eddy Current

3.1  Potentiometer
Slide-wire Resistance Potentiometer:

Ei

Eo

l

x

Ec = 
x
l    Ei      or    X = 

Ec
Ei

   l

Displacement can be measured from the above equation.  Different potentiometers are available to
measure linear as well as angular displacement.  Potententiometers are generally used to measure
large displacements, e.g.,     >     10 mm of linear motion and     >     15 degrees of angular motion.  Some
special potentiometers are designed with a resolution of 0.001 mm.
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    Differential Transformer   

LVDT (Linear Variable Differential Transformer) is a popular transducer which is based on
a variable-inductance principle for displacement measurements. The position of the magnetic core
controls the mutual inductance between the center of the primary coil and the two outer of
secondary coils.  The imbalance in mutual inductance between the center location, and an output
voltage develops. Frequency applied to the primary coil can range from 50 to 25000 Hz.  If the
LVDT is used to measure dynamic displacements, the carrier frequency should be 10 times greater
than the highest frequency component in the dynamic signal.  In general, highest sensitivities are
attained at frequencies of 1 to 5 kHz.  The input voltages range from 5 to 15 V.  Sensitivities
usually vary from  0.02 to 0.2 V/mm of displacement per volt of excitation applied to the primary
coil.  The actual sensitivity depends on the design of each LVDT.  The stroke varies in a range of +    
150 mm (low sensitivity). There are two other commonly used differential transformers: DCDT--
Direct Current Differential Transformer and RVDT--  Rotary Variable Differential Transformer
(range of linear operation is ± 40 degrees).  Consult Figs. 12.9 and 12.11 of Textbook for typical
schematic diagrams of LVDT and Fig. 12.12 for that of RVDT.  

LVDT and RVDT are known for long lifetime of usage and no overtravel damage.   

3.2 Resistance-type stain gage

Lord Kelvin observed the strain sensitivity of metals (copper and iron) in 1856.  The effect
can be explained in the following analysis.

R = 
ρL
A              (uniform metal conduction)

where R = resistance, ρ = specific resistance, L = length of the conductor, A = cross-sectional area
of the conductor

dR
R    =  

dρ
ρ

   +  
dL
L    -  

dA
A  

Consider a rod under a uniaxial tensile stress state:
L

εa  =  
dL
L       ,      εt  =  - νεa  =  -ν  dL

L  

where εa  =  axial strain,  εt  =  transverse strain,  ν  =  Poisson ratio (note that νp was used in
Textbook)

df  =  do ( l  -  ν 
dL
L   )

where do =  initial diameter,  df =  diameter after the rod is strained

dA
A    =  -2ν 

dL
L      ;      

dA
A    =  -2ν 

dL
L  

Substituting 
dA
A    into the resistance equation, one obtains
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dR
R    =  

dρ
ρ

   +  
dL
L    +  2ν 

dL
L     ,   or     

dR
R    =  

dρ
ρ

   +  (1 + 2ν) 
dL
L    ;  εa  =  

dL
L  

Thus,  the sensitivity of the conductor  SA becomes

           SA  =  
dR/R

εa
   =  

dρ/ρ
εa

    +   ( 1+ 2ν)

                              (change in ρ) (change in dimension)

ν = 0.3 for most materials used.

π1 =  
1

Em
      

dρ/ρ
dL/L    Em :  Young's modulus; π1:  Piezoresistance Coefficient

σa =  Em  εa

Sa =  (1+2ν) + Em π1

For advance alloy,  
∆R/R

R     is linearly proportional to ε.

Cooper - nickel alloy known as Advance of Constantan is a common material for strain gage.
Typical values of SA are summarized:

Material Composition (%) SA
Advance or Constantan 45 Ni,  55 Cu 2.1
Nichrome V 80 Ni,  20 Cr 2.1
Isoelastic 36 Ni, 8 Cr, 3 Al, 3 Fe 3.6
Platinum-Tungsten 92 Ni, 8 W 4.0

∆R
R    =  Sg ε  =  GF  ε

Sg  =  gage factor (note that Sg  <  SA  as a result of the grid configuration); or GF is used
Voltage output is frequently obtained using a Wheatstone bridge:

R

RR

Rg

Eo

Ei

Eo = 
Ei
4    

∆Rg
R  

Eo = 
1
4   Ei Sg ε

The input voltage is controlled by the gage size and the initial resistance.  The output voltage (Eo)
usually ranges between 1 and 10 µv/microunit of strain (µm/m or µin/in).
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3.3 Capacitance Sensor

C
w

h

Consider two metal plates separated by an air gap, h, the capacitance between terminals is
given by the expression:

C = 
kκA

h  

C: capacitance in picofarads (pF or pf)
κ: dielectric constant for the medium between the plates
A: overlapping area of the two plates
k: proportionality constant (k = 0.225 for dimensions in inches, k = 0.00885 for dimensions in
millimeters)

If the plate separation is changed by ∆h, while A is kept unchanged;  then

∂C

∂h
  = - 

kκA

h2
   *  

1
h                For varying h and fixed A, sensitivity, S ≡ 

∆C

∆h
  is

S  =  - 
kκA

h2
 

A = l w, where l is overlapping distance

If the overlapping area is changed, while h is fixed, then

C = kκlw/h

S = 
∂
∂
C

l
= 

kκw
h                (sensitivity for varying A, fixed h)

Typical sensitivity for a sensor of w = 10 mm,  h = 0.2 mm, is 0.4425 pF/mm

3.4 Eddy Current Sensor
An eddy  current sensor measures distance between the sensor and an electrically

conducting surface:
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Displacement

Output

Target
SYSTEM ELECTRONICS

High-Frequency Carrier Supply
Impedance bridge

Demodulator

1-MHz Magnetic field

Active Coil
Inactive Coil

Impedance bridge is used to measure changes in eddy currents.  Typical sensitivity of the eddy
current sensor with an aluminum target is about 100 mV/mil of 4 V/mm.  Temperature variation
generally has small or negligible effects especially for the sensing element with dual coils which is
temperature compensated.

Eddy current sensors are often used for automatic control of dimensions in fabrication
processes.  They  are also applied to determine thickness of organic coatings.

4 . Load Cell (Force Measurements)

4.1  Introduction

F =  ma;  W  =  mg
Weight depends on local gravitational acceleration.  It is known that g = 9.80665  m/s2 is referred
to the "standard" gravitational acceleration which corresponds to the value at sea level and 45°
latitude.  The deviation from the standard value can be calculated following:

g = 978.049 (1 + 0.0052884 sin2 φ - 0.0000059  sin2 2φ) cm/s2

The correction for altitude h is

 gc =  - (0.00030855 + 0.00000022 cos 2φ) h + 0.000072 (
h

1000 )2   cm/s2

where h is in meters

"Dead weight" is computed based on accurately known mass and the local g value.  This is
generally done by NIST.

     Methods of Force Measurement

1. Balancing it against the known gravitational force on a standard mass.
2. Measuring the acceleration of a body of known mass to which unknown force is applied.
3. Balancing it against magnetic force developed by interaction of a current-carrying coil and a

magnet.
4. Transducing the force to a fluid pressure then measuring the p.
5. Applying the force to some elastic member and measuring the resulting deflection.
6. Measuring the change in precision of a gyroscope caused by an applied torque related to the

measured force.
7. Measured the change in natural frequency of a wire tensioned by the force.
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4.2   Link-Type  Load  Cell

    LVDT Sensor   

Elastic Element

LVDT

LVDT Core

Fixed Housing

Force

Rigid Link

    Strain Gauge Sensor   

#1 #2

#4 #3Gague #1 Gague #3

VDC

Axial
Transverse

Output

Axial
Transverse

Force

Force

Load cells utilize elastic members and relate deflections to forces; uniaxial link-type load
cells shown above use strain gages as the sensor.

The axial and transverse strains resulting from the load P are:

             εa =  
P

AE           εt = - 
νP
AE    

where A:   cross-sectional area,       E:   Young's modulus,       ν:   Poisson's ratio
The responses of the gages are:

∆R1
R1

   =  
∆R4
R4

    =   Sg εa   =   Sg  P/(AE); Sg = (dRg/R)/ εa

∆R2
R2

   =  
∆R3
R3

    =   Sg ετ   =   - ν 
SgP
AE  

The output voltage Eo from a wheatstone bridge having four identical arms (R1 = R2 = R3 = R4)
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Eo =  
R1R2

(R1 + R2)2
  ( 

∆R1
R1

  -  
∆R2
R2

  -  
∆R3
R3

  +  
∆R4
R4

 )  Ei

Eo =  
1
2  

SgP(1 + ν) Ei
AE     

Let's define  C  ≡  
2 AE

Sg (1 + ν)Ei
                (calibration constant)  ,  then  Eo = 

P
C  

sensitivity of the load cell is

S  ≡  
∂Eo

∂P
    =   

1
C        or      S  =  

1
C    =   

Sg (1 + ν)Ei
2   A E      

    Remarks:
a. Eo  is linearly proportional to the load P.
b. The range of the load cell is

P = SfA where Sf is the fatigue strength.

This implies that high sensitivity is associated with low capacity and vice versa.

c. (
Eo

Ei max
 )    =    

Sg(1 + ν) Ei Pmax
2 AE Ei

   =  
Sg Sf (1 + ν)

2  E  

Most load-cell links are fabricated from AISI4340 steel (E = 3 x 107 psi,  ν = .30,  Sf ≈ 8 x

104 psi)  and the ratio equals  
Eo
Ei

  = 3.47 mV/V; Sg ≈ 2

Typical load cells are rated with (Eo/Ei)  =  3mV/V at the full-scale value of the load (Pmax).  With
this full-scale specification, the load P can be obtained from

(Eo/Ei)
(Eo/Ei) * Pmax

 

Typically Ei has a value of 10 V; therefore, Eo is in the range of 30 mV.

4.3 Beam-Type Load Cell

P

#1
#3

x

w

s

VDC

#1

#3#4

#2
Output

Bottom #2, #4

Top #1, #3
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Beam-type load cells are commonly used for measuring low-level loads where the link-type load
cell is not effective.

ε1  =  -ε2  =  ε3  =  -ε4   =   
6M

Ebh2
   =  

6 PX

Ebh2
 

The response of the strain gage is (recall  ∆R/R  =  Sg ε)

 
∆R1
R1

   =  - 
∆R2
R2

    =   
∆R3
R3

   =  - 
∆R4
R4

   =  
6 Sg PX

Ebh2
 

If the four gages are identical, then the output is

P  =   
(Ebh)2

6Sg   XEi 
   Eo  =  C Eo   and the calibration constant C    C = 

(Ebh)2
6 SgXEi

 

The sensitivity of the load cell, S, can be determined from   
∂ Eo

∂   P
 

S  =  
1
C   =  

6 SgXEi

Ebh2
 

The maximum load Pmax = Sfbh2/(6x)  and (Eo/Ei)max = SgSf/E
Typical beam-type load cells have ratings of (Eo/Ei)*  between 4 and 5  mV/V at full-scale load.

4.4 Shear-Web-Type  Load Cell  (Low-Profile or Flat Load Cells)

This type of load cell is compact and stiff and can be used in dynamic measurements.

4.5 Ring-Type  Load Cell

δ = 1.79  
PR3

Ewt3
    ,   Eo  =  S δ Ei  (S = sensitivity)

St =  1.79  S R3 Ei / Ewt3  ,    and Eo/Ei   ≈  300 mV/V

#1#2 #4#3
D =

 2 
R

VDC

#1

#3#4

#2
Output

P

t

Area = w • w
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5 . Torque and Power Measurements

5.1. Torque Measurements

 For a circular cylinder:

τmax = T Ro/J

where τmax is the maximum shearing stress, T the applied torque, J the polar moment of
inertia (πRo

4/2 for a solid cylinder)

5.2. Power Measurements

Ps = ω x T

Ps = ω T

where Ps is the shaft power, ω the rotational speed, and T the applied torque

5.2.1 Prony Brake

The Prony brakes apply a well-defined load to, for example, an engine.  The power is
determined from the force applied to the torque arm and the rotational speed.  (e.g., see
Fig. 12.34 of Textbook)

5.2.2 Cradled Dynamometers

The cradled dynamometer measures the rotational speed of the power transmission shaft,
and the reaction torque (to prevent movement of the stationary part of the prime mover).

ASME Performance Test Code lists sources of the overall uncertainty with the cradled
dynamometers measurements to be

• trunnion bearing friction
• force measurement uncertainty
• moment arm-length measurement uncertainty
• rotational speed measurement uncertainty
• static unbalance of dynamometer

Types of dynamometers:

• eddy current dynamometer
• AC and DC generator
• waterbrake dynamometer (Fig. 12.36 in Textbook)

6 . Temperature Sensor

6.1 Introduction

    Definition
Temperature is a physical quantity which is related to the energy level of molecules, or  the energy
level of a system.  Temperature is a thermodynamic property.
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    Review

(1)      Thermal equilibrium  (Zeroth Law of Thermodynamics)
TA  =  TB  ,   TB  =  TC  →    TA  =  TC

(2) Temperature scale
SI Units

6.2 Thermocouples  (TC)
T.J.  Seebeck (1821) discovered emf  (electromotive force)  exists across a junction formed of
dissimilar metals at the junction temperature (Peltier effect),  and the temperature gradient
(Thomson effect).  It should be noted that the Thomson effect is generally negligible when it is
compared to the Peltier effect.

emf

A

B

(1)  Application Laws  (P.H. Dike, 1954)

    Law of intermediate metals
Insertion of an intermediate metal into a TC circuit will not affect the net emf, provided that the two
junctions introduced by the third metal are maintained at an identical T.

A

B B

Measuring Device

T3

T1 T2

emf:  T1  vs  T2

    Law of intermediate temperatures
If a TC circuit develops an emf E1, with its junctions are at T1 and T2,  and E2 with T2 and T3, the
TC will develop an emf E1 + E2 with its junctions maintained at T1  and  T3.

T1 T3

Material A

Material B Material B

T1 T2

Material A

Material B Material B

T2 T3

Material A

Material B Material B

= +

(2)  TC  Materials
Type Materials
E Chromel-Constantan
J Iron-Constantan
T Copper-Constantan
K Chromel-Alumel
R Platinum-Platinum/13% rhodium
S Platinum-Platinum/10% rhodium
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Consult Fig. 8.18 of Textbook for thermocouple voltage output (Type E, J, K, E, R, S) as
functions of temperature.

(3)      Basic Circuit

Refernce/Ice Cell

A

B Cu Cu

Potentiometer/RecorderMeasuring
Junction

Refernce/Ice Cell

A

B

Potentiometer/RecorderMeasuring
Junction

A

0° C  (32°F)  is usually selected as the reference temperature

Thermocouple

Thermometer

Mercury or Oil

IceWater

Insulation

(4)  emf Output

E  =  AT + 1/2 BT2  +  1/3 CT3 (based on 0°C  reference junction)

S ≡  
dE
dT    =   A   +   BT   +   CT2 (sensitivity)

or

E = Σ ciT
i                 where i = 0 to n;

consult Table 8.7 of Textbook for polynomial coefficients for Type J and Type T.

(5)  Extension Wires  (to minimize expensive wire length)

It should be noted that special formulated wires are available for each type of TC to minimize
effects of small temperature variation at intermediate junctions.
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(6)  Thermocouple circuits

    Thermopile   
Output will be equal to the sums of the individual emf's, therefore, the sensitivity increases.

    Parallel thermocouple
Output equals the average of T1, T2  and  T3  for the following arrangement:

1 2 N

Reference Junction

Parallel

1

2

N

A

B

A

B

A

B

Reference Junction

Thermopile

5.3 Expansion Thermometer

The expansion and contraction nature of materials when they are exposed to a temperature
change is applied to temperature measurements.  The phenomenon can be expressed as

 
∆l

l
   =  α ∆Τ

where ∆/ is the variation per unit length, and α is the thermal coefficient of expansion.

    Liquid-in-Glass  Thermometers

Expansion
Chmaber

Contraction
Chmaber

Reference
Mark

Bulb

Stem Scale

This type of thermometer utilizes the differential expansion between two different materials to
measure temperature changes, for examples, mercury thermometer, alcohol thermometers, etc.

    Type        T range (             °              C)   
Hg filled    -32 to 320
Pressure filled    -35 to 530
Alcohol    -75 to 129

Note that stem corrections are needed for "bench mark" measurements.
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    Bimetallic Temperature Sensors   
This popular temperature sensor thermostat is based on the difference in thermal coefficient of
expansion of two different metals which are brazed together.

Metal A

Metal B

tA
tB

r  =  
[ 3(1 + m)2 + (1 + mn) (m2 + 1/mn) ]t

6(αA - αB) (1 + m)2 (T - To)
 

where r is the radius of curvature

m  =  
tB
tA

   thickness ratio

n =  
EB
EA

   modulus ratio,  E = modulus of elasticity

αΑ:  high coeff. of expansion,  e.g. copper-based alloy

αB:  low coeff. of expansion,  e.g. Invar (nickel steel)          To:  initial bonding T

    Pressure Thermometer
Fluid expansion characteristic is applied to T measurements.

Bourdon Tube, Diaphram,
LVDT (linear variable differential

transformer)Pressure
Sensor

Fluid Containing
Vessel

Liquid-filled:  completely filled with liquids; gas-filled:  completely filled with gases; vapor-filled :
liquid-vapor combination

5.4.  Resistance Thermometer

Electrical resistance of most materials varies with temperature, this provides a basis for temperature
measurements.  Two types of resistance thermometer have been widely used.

RTD Thermistor
Resistance increases as T increases decreases as T increases
T  vs  R linear nonlinear
T  range -250° to 1000°C -100°  to  250°C

    RTD    
RTD denotes resistance temperature detector; usually, such metals as nickel, copper, platinum or
silver, are used as sensor elements; consult Figure 8.5 of Textbook for relative resistance.

    Thermistor
Semiconducting materials having negative resistance coefficients are used as sensor elements, e.g.
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combination of metallic oxides of cobalt, magnesium, and nickel.  An example of thermistor
resistance variation with temperature is given by Figure 8.8 of Textbook.

    RTD
Resistance-temperature relationship assumes a general form:

R  =  Ro (1 + ν1T + ν2T2 + ....... + νnTn)

ν's :   temperature coefficients of resistivity
Ro  :   resistance at To

For practical purposes, second order polynomials are usually sufficient to correlate R with T:
 R   =   Ro (1 + aT + bT2)

Sensitivity of a linear T-dependence resistance element is:
R  =  Ro  [ 1 + α [ T - To]  ]

S  ≡  
dR
dT    =   α  Ro

Electrical bridges are normally used to measure the resistance change in RTD.

    Thermistor
Resistance-temperature function:

R  =  Ro  exp [ β (
1
T   -  

1
To

  ) ]

R    :   resistance at T[K]
Ro  :   resistance at To[K]

β  :  constant, (=350 - 4600 K)

Thermistors have high sensitivities than RTD

S ≡  
dR
dT    =  Ro  exp  [ β (

1
T   -  

1
To

  )]  *  
-β
T2

 

6.5      Pyrometer

Electromagnetic radiation is measured by three distinct instruments --  total radiation, optical
pyrometer and infrared pyrometer.  The emissive power of a blackbody follows the Planck's Law
(cf., Figure 8.25 of Textbook, 1995).

6.6 Total-Radiation Pyrometry

Focusing Lens

Detector

Liquid Nitrogen

Target

(1) Applicable to T > 550° C, although some devices may be used to measure lower T's.
(2) Object of measurements should approach the B.B. conditions.
(3) Materials of windows and lens are important.
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     λ  (µm)     Material
0.3-2.7 pyrex glass
0.3-3.8 fused silica
0.3-10 calcium fluoride

    Optical Pyrometry    
Matching the brightness of a filament and unknown T source, e.g., see illustration below and
Figure 8.28 or Textbook.  It can be used in the range of 700° C  to 4000° C.

Target

Objective
Lens

Objective
Aperture

Filter

Red
Filter

Pyrometer
Lamp

Microscope
Objective Lens

Microscope
Ocular

Microscope
Objective Aperture

Current Source

   Infrared (IR) Pyrometry
IR instrument employs a photo cell, e.g.  photo conductive, photovoltaic, photo electromagnetic,
to detect photon flux.  T range -40° C  to 4000° C.

6.7 Heat Flux Sensor-- An Application of Temperature Sensor

   Introduction    

q" = 
q
A 





W

m2
 

q":  heat flux , q:  heat transfer rate [W]

    Slug-Type Sensor

Consider a control volume as shown below:

LSlug

q"

insulation

thermocouple

From the first law of thermodynamics, one obtains

Q
.
  = 





dE

dt  
c.v.

    , or q" As = 




dE

dt   
c.v.



44

⌡⌠
t1

t
2

 q" A dt   = m c (T2 - T1)

In differential form, one obtains

 q" = 
m C

A  
d T
dt  

It should be noted that the above equation neglects heat loss from insulation and thermocouple
wires, and it assumes a uniform temperature of the slug.  To account for these effects, a heat loss
coefficient may be introduced and one-dimensional or multi-dimensional heat condition analysis
may be employed.

 q" = 
m C

A  
d T
dt  + U ∆ T  

where U is the overall heat transfer coefficient to account for heat loss to surroundings, and ∆T is
the temperature difference.

    Steady-State or Asymptotic Sensor (Gardon Gage)   

A differential thermocouple between the disk center and its edge is formed when the thin
constantan disk is exposed to heat flux, and an equilibrium temperature difference is established.
The temperature difference is proportional to the heat flux (cf., Gardon, R., Review of Scientific
Instrument, p. 366, May, 1953).

eo CuCu

Copper  Heat Sink (T2)

q"

Constantan Disk (T1)

T1 T2
Cu Cu

e 1 e 2Constantan

Constantant

CuCu

q" = 2 S k
R2 ∆T = C e

S:  membrane thickness
k:  thermal cond. of the membrane
R: membrane radius
∆T:  | T1 - T2 |
C:  calibration constant
e:  emf output of t.c.

Constantan

emf output

7 . Pressure Sensor
Pressure transducers convert pressure into an electrical signal, through displacement, strain, or
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piezoelectric response.

7.1 Displacement-Type Pressure Measurement (Bourdon Tube)
A c-shape pressure vessel either a flat oval cross section which straightens as an internal pressure
is applied.  Good for static measurements, frequency response only 10 Hz.

Bourdon Tube

LVDT

7.2      Diaphram-Type Pressure Transducer
A diaphram or hollow cylinder serves as the elastic element, and a strain gage serves as the sensor.
The sensitivity S is proportional to (Ro/t)2 where t is the thickness and Ro the radius.

Maximum (Ro/t) value is determined by diaphram deflection, rather than yield strength.  Diaphram-
type pressure transducers can be used for static as well as dynamic measurements.  Frequency
response can reach 10 kHz.

7.3 Piezoelectric-Type Pressure Transducers
Piezoelectric pressure transducers can be used in very-high-pressure (say 100,000 psi ) and high
temperatures (say 350° C)  measurements. High frequency response is another distinct feature.
Charge amplifiers are used as signal conditioner for the measurement  system.

    Dual Sensitivity    
Output voltage is due to a primary quantity, e.g. load, torque, pressure, etc., and secondary
quantities, e.g. temperature or secondary load.

Temperature-- temperature compensation is required for accurate measurements.
Secondary Load-- bending moments may be applied to a link-type load cell.  Proper placement of
the strain gage generally can eliminate the effects resulting from the secondary load.

7.4      Piezoelectric Sensors for Force and Pressure measurements

Piezoelectric material is a material is a material that produces an electric charge when subject to
force or pressure.  Single-crystal quartz of polycrystalline barium titanate has been used for
piezoelectric sensors.  When pressure is applied, the crystal deforms, and there is a relative
displacement of the positive and negative charges within the crystal.  The displacement of internal
charges produces external charges of opposite signs on two surface of the crystal.

q  =  EoC

q:   charge develops on two surfaces,
C:  capacitance of the piezoelectric crystal, or   q  =  SqAp
Sq: charge sensitivity of the piezoelectric crystal
A:  area of electrode

where C  =  
kκA

h     for capacitance sensor.  Substituting C and q into the Eo equation:
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Eo  =  
q
C   =  

SqAp

kκA
  h , or  Eo  =   

q

kκ
   hP

The voltage sensitivity can be derived form Eo  =  SE  hp:

SE  =  
Sq

kκ
 

Typical sensitivities are

Material Orientation                      Sq(pC/N)      SE(Vm/N)
Quartz X-cut                 2.2         0.055
Barium titanate Parallel to orientation       130         0.011

Piezoelectric sensors have high frequency response which is a distinct advantage of using these
sensors.
7.5     Piezoresistive Sensors

Piezoresisitive materials exhigit a chang in resistance when subject to pressure.  These sensors are
fabricated from semiconductive materials, e.g., silicon containing boron as the trace imputity for
the P-type material and arsenic as the trace imputity for the N-type material.  The resistivity of the
semiconducting materials is

ρ  =  
1

eNµ
   

where
e: electron charge
N: number of charge carriers
µ: mobility of charge carriers

This equation indicates that the resistivity changes when the piezoresistive sensor is subjected to
either stress of strain known as piezoresistive effect:

ρij   =   δij P  +   πιjkl τkl

where subscripts i, j, k, andl range from 1 to 3

πijkl:  4th rank piezoresistrive tensor

τkl:  stress tensor

δij:  Kroneker delta; δij = 0 for I ≠ j  and δij  =  1 for i = j

For cubic crystal (1, 2, 3 identify axes fo the crystal):

ρ11  =  ρ[1 + π11σ11 + π12(σ22 + σ33)]

ρ22  =  ρ[1 + π11σ22 + π12(σ33 + σ11)]

ρ33  =  ρ[1 + π11σ33 + π12(σ11 + σ22)]

ρ12  =  ρπ44τ12 ρ23  =  ρπ44τ23 ρ31  =  ρπ44τ31

The implications of the above equations are the anisotropic resistivity.
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E
'
i    =   ρij I 

'
j 

where E = potential gradient, and I = current density.

E
'
1

ρ
    =   I 

'
1  [1 + π11σ11 + π12 (σ22 + σ33)] + π44 (I

'
2 τ12 + I

'
3 σ31)

E
'
2

ρ
    =   I

'
2  [1 + π11σ22 + π12 (σ33 + σ11)] + π44 (I

'
3 τ23 + I

'
1 τ12)

E
'
3

ρ
    =   I

'
3  [1 + π11σ33 + π12 (σ11 + σ22)] + π44 (I

'
1 τ31 + I

'
2 τ23)

8 . Flow Measurements

8.1 Pressure Probes

8.1.1 Total Pressure

For a steady incompressible flow, the Bernoulli equation states that along the same stream
line

P
u

P
u

1
1
2

2
2
2

2 2
+ = +ρ ρ

Lets define the stagnation state is that  u2 = 0.  For example, the stagnation pressure Pt can be
defined as

P P
u

Pt s= + = +1
1
2

2

2

2
0
2

ρ
( )

P  is reached by bringing the flow to rest at a point by an isentropic process.  Let's consider flow
over a cylinder, with a uniform velocity approaching the cylinder:

u1 = u3, P1 = P3

where u1 and u3 are known as free-stream velocity, P1 and P3 are free-stream pressure.  At
location 4 (Fig. 9.18, Figliola and Beasley, 1995) , u3 ≠ u4, therefore, P3 ≠ P4.  P4 is known as
the local static pressure.  To measure the total pressure, impact cylinder, pitot tube and kiel probe
are commonly used.  Sketches of these probes are shown in Fig. 9.18 of Figliola and Beasley
(1995).

Alignment of the impact port with flow direction is important in the total pressure measurements.
The Kiel probe utilizes a converging section to force the flow to align with the impact port.

8.1.2 Static Pressure-Prandtl tube
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Figure 9.20, Figliola and Beasley (1995).

8.1.3 Pitot-Static Pressure Probe

From the stagnation (total) and static pressure measurements,  one can obtain velocity from
their difference, or the dynamic pressure:

P P u

P P P

P u

t x

t x

= +

= −

=

1
2

1
2

2

2

ρ

ρ

υ

υ

u
P Pt x= −2( )

ρ
Pitot-static pressure probes have a low velocity limit due to the viscous effects; generally

it requires that

Red
ud
u

= >ρ
1000  .

Correction factor is used; for 20 < Red <1000

C
d

υ = +1
8

Re
,

 and P C Piυ υ=  where Pi is the indicated pressure difference.

8.2 Thermal Anemometer

A thermal anemometer utilizes an RTD sensor, and correlates the heat transfer rate to flow
velocity; cf. King, L.V.,     Phil. Tans. Roy Soc. London    , 214 (14): 373, 1914.

q a bu T T= + − ∞( )( ).0 5
ω

By supplying a current flow, one can obtain a constant temperature operation because the
heat dissipated is

q i R i Ro T Tw= = + − ∞
2 2 1( ( ))α ω

i Ro T T a bu T To2 0 51( ( )) ( )( ).+ − = + − ∞α ωω

where To is the reference temperature.

8.3 Volumetric Flow Rate Measurements

8.3.1 Pressure Differential Meters
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Q ∝ (P1 -P2)n

Q, volumetric flow rate

n = 1 (laminar) or 2 (turbulent), e.g., for laminar flow

Q
d
L

P= π
µ

2

128
∆

 where d is the diameter, and L the length

Laminar Flow Element

    Obstruction Meters   

• Continuity Equation

u A u A1 1 2 2=      (ρ = constant)

u u
A
A1 2

2

1
=

• Energy Equation and Momentum Equation

P u P u
hL

1 1
2

2 2
2

2 2 1 2ρ ρ
+ = + + −

hL1 2− : the head losses due to the friction effects between 1 and 2.

u u P P
h

u u A

A

P P
h

u
A
A

P P
h

Q u A
A

A
A

P P

L

L

L

2
2

1
2

1 2

2
2

2
2

2
2

1
2

1 2

2

2

1

2
1 2

2 2
2

2

1

2
1 2

2 2

2 2

1

1

2
2

1

2

1 2

1 2

1 2

− = − +

− = − +

=

−






−( ) +

=( ) =

−






−( )

−

−

−

ρ

ρ

ρ

ρ
* ++ −2

1 2
hL

The volumetric flow rate can be related to the pressure drop across an obstruction.  There
are three common types of obstructions: orifice plates, long radius nozzle, and venturi.  When the
flow approaches the obstruction, the flow area changes.  Furthermore, the effective flow area
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changes due to the boundary layer effects, flow separation, and three-dimensional flow (secondary
flow) in the vicinity of the obstruction.  Figure 10.4 of Figliola and Beasley (1995) illustrates the
effective area change around the obstruction.  To account for the effective area change, an
contraction coefficient can be introduced to replace A2 and Ao.

 Cc
A
A

Cc
A

A
o=







=







−

2

1
2

0
;

Q
C

C
A
A

P
hc

c

L=

− −


















+ −

1

2
2

0

1

2
1
2

1 2

∆
ρ

Q
C A

C
A
A

P h

P
c

c

L=

−






+






−0

0

1

2

1

2
1

2

2
1 2∆

∆ρ
ρ

The frictional head loss can be expressed as

C
h

P

Q
C C A

C
A
A

P

Q CEA
P

f
L

f e

c

= +

=

−






=

−1
2
2

1

2

2

1 2

0

0

1

2

∆

∆

∆

ρ

ρ

ρ

C: discharge coefficient

E: velocity of approach factor

E
A
A

=

−






=
−

1

1

1

10

1

2 4β
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where β = d0/d1, and Ko = CE can be introduced

Q K A
P

o= 2
∆
ρ

When the compressibility effects need to be considered, an adiabatic expansion coefficient
Y can be used to account for the compressibility effects on the flow rate.

Q YCEA
P= 2

∆
ρ

where Y is given in Fig. 10.7 for k = Cp/Cv = 1.4

Orifice Mete

Venturi Flowmeter

 Long-Radius Nozzle

8.3.2 Drag - Rotameters

8.3.3 Choked Flow - Sonic Nozzle

Choke flow properties can be used to obtain the mass flow meter by measuring the upstream
pressure, Pi.  The critical pressure ratio is

8.3.4 Vortex Shedding Frequency - Vortex Shedding Meter

8.3.5    Electromagnetic Flow Meter

8.3.6    Turbine Flow Meter
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LECTURE NOTES III-- SYSTEM RESPONSE

    Section        Description

1. Introduction

2. Simplified Physical System

3. Second-Order System

4. First-Order System

5. Frequency Domain Representation of Time-Series Data

6. Forced Second-Order System
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1 . Introduction

Amplitude response
Frequency response
Phase response
Rise time, or delay
Slew rate--the maximum rate of change that the system can follow

2 . Simplified Physical Systems

2.1 Mechanical Systems

Mass
Spring force
Damping

2.2 Dynamic Characteristics of Simplified Mechanical Systems

Most simplified measuring systems can be approximated as a single degree of freedom
system, linear restoring force, and viscous damping.

C k

F (t)
x

x

m

m 
d2x

dt2
  = F(t) - kx - c 

dx
dt   , or

m 
d2x

dt2
  + c 

dx
dt   + kx = F(t)

    Zero-Order System     
Output = Constant x Input (spring and damper removed)

    First-Order System     

Setting m = 0, one obtains: c
dx
dt   + kx = F(t)

    Second-Order System

m assumes a non-zero value.
3 . Second-Order System

3.1 General Description
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a2 
d2qo

dt2
  + a1 

dqo
dt   + aoqo = boqi a2 ≠ 0

Rearranging the second-order ODE, one obtains





a2

ao
 
d2qo

dt2
  + 





a1

ao
 
dqo
dt   + qo = 





bo

ao
  qi

Define

Ps = 
bo
ao

  = static sensitivity

ωn = 




ao

a2
 
1 / 2 

= (undamped) natural frequency

ζ = 
a1

2(aoa2)1 / 2
  = damping ratio

Recall

C k

F (t)

m
d2x

dt2
  + c 

dx
dt   + kx =  F(t)

Ps = 
F(t)

k  

ωn = 
k
m 

ζ = 
c

2 km
 

3.2 Free Vibration Second-Order System, F(t) = 0

m
d2x

dt2
  + c 

dx
dt   + kx = 0 ; I.C. t = 0 x = x(0) x

.
  = x

.
(0) 

(a) Undamped, c = 0
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m
d2x

dt2
  + kx = 0  x = A cos ωnt + B sin ωnt

ωn =  
k
m 

x(t) = x(0) cos(ωnt) + 
x
.
(0)

ωn
 sin (ωnt)  

(b) Viscous Damping, c ≠ 0

m
d2x

dt2
  + c 

dx
dt   + kx = 0

x(t) = exp[ - ζ ωnt] (A cos(ωdt) + B sin(ωdt))

x(0) = A

x
.
 =  -ζ ωnA + Bωd, B = 

x
.
 + ζ  ω n x (0 )

ωd
 

x(t) = exp [ - ζ ωnt]  








x(0) cos(ωdt) + 






x

.
(0) + ζ ωnx(0)

ωd
 sin(ωdt)  

where ωd = ( )1 - ζ2   ωn,  damped frequency

Solution to the ODE

m
d2x

dt2
 + c 

d x
dt   +   k x   =   0   

x = est

(ms2 + cs + k) est = 0;  ms2 + cs + k = 0; s = -
c

2m  ± 




c

2m
2

  -  
k
m 

If 




c

2m  
2
 - 

k
m  < 0, then oscillation in t.

 
c2

4m2
  
m
k   < 1, or  





c

2mk
 
2
 < 1 and ζ < 1

s = -
c

2m  ± 
k
m  • (1 - ζ2)  i

s = -
c

2m  ± (1 - ζ2) 




k

m      i

c
2m  = ζ  

k
m  = ζ   ωn
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(1 - ζ2) 




k

m   = ωn   (1 - ζ2)  = ωd

Therefore, the solution is

x(t) = exp ( - ζ ωnt) • ( )A cos(ωdt) + B sin(ωdt)  
I.C.:
t = 0 x(0) = A  

x
.
(0)  = ( - ζ ωn) exp(0) • A + exp(0)ωd cos (0)

x
.
(0)  = - ζ ωnA + B ωd

B   =  
x
.
(0)  +  ζ  ωn  x(0)

ωd
 

x(t) = exp ( - ζ  ω nt) • 








x(0)cos (ωdt) + 
x
.
(0)  +  ζ  ωn  x(0)

ωd
 s in   (ωdt)  

    Examples        of       second-order       systems

0 0.005 0.01 0.015 0.02

-6000
-4000
-2000

2000
4000
6000

0.005 0.01 0.015 0.02
-1000

0

1000
2000
3000
4000

ζ = 0.3

ζ = 0

0 0.005 0.01 0.015 0.02

500
1000
1500
2000 ζ = 1

ζ = 3

0 0.005 0.01 0.015 0.02

200
400
600
800
1000
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(c)     Coulomb Damping     (dry friction)

kF d

x
mẍ +  kx  ±  Fd   =   0  

For downward motion, the equation of motion is

mẍ  + kx - Fd = 0, or

mẍ + k (x -  Fd/k)  =  0  

Let x̃  = x - Fd/k, thus  mẍ̃ + kx̃  = 0

x̃  = A1 cos ωnt + B1 sin ωnt

x = (A1 cos ωnt + B1 sin ωnt) + Fd/k

I.C.:  t = 0; x = x0 and  x
.
  = 0

A1 = x0 - Fd/k, B1 = 0

x  =  



x0 - 

Fd
k  cos ω nt + 

Fd
k  (A)

When the motion is reversed,

mẍ + k (x + Fd/k)  =  0  

x = (A2 cos ωnt + B2 sin ωnt) - Fd/k

The initial condition is obtained by setting t = 
π
ωn

   to Eq. (A)

I.C.  t = 
π
ωn

  ;

x




π

ωn
  = - x0 + 2 

Fd
k  

x
.





π

ωn
  = 0



58

Thus A2 = x0 - 
3Fd
k   , B2 = 0

x   =     



x0 - 

3Fd
k  cos (ωnt) - 

Fd
k  (B)

Thus, the decrement of the peak amplitude is

xn + 1 - xn = 4 
Fd
k  

The following equation is an approximation to the solution:

x(t) = x0 




1 - 

4Fd
x0k 

t
T   sin (ωnt)

ωn t

x

4 . First-Order System: a1 
dq0
dt   + a0q0 = b0qi (i.e., with a2 = 0)

4.1 General Solution for Systems with a constant forcing

F(t) = F0 = constant

c 
dx
dt   + kx = F

c 
dx
dt   + kx = Fo

I.C.: t = 0; x = x0

c 
dx
dt   = F0 - kx

c
k 

dkx
dt   = F0 - kx

dkx
F0 - kx  = 

k
c  dt

[ ]ln (F0 - kx)
x
x0

  = - 




kt

c  
t
0
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ln 
F0 - kx
F0 - kx0

  = - 
k
c  t

F0 - kx
F0 - kx0

  = exp 




- 

k
c  t    

Define time constant, τ, as

τ ≡ 
c
k 

F0 - kx
 F0 - kx0

 = exp 




-  

t

τ
     

Let's examine the asymptotic solution as t approaches ∞:

F0 - kx∞ = 0, or x∞ = F0/k

Rearranging the solution, one obtains

F0/k - x
F0/k - x0

  = exp 




-  

t

τ
   

x∞   -  x
x∞  - x0

  = exp 




-  

t

τ
     ,  or

x = x∞  + (x0 - x∞ ) exp 




-  

t

τ
     

Grouping x∞, the solution becomes:

 x = x∞ (1 - e-t/τ) + xo e -  t/τ  

The solution can be generalized by replacing "x" with "P" which represents the process variable,
e.g. temperature in Lab. No. 3.

P = P∞  + (P0 - P∞ ) exp 




-  

t

τ
     

P  =  P∞  




1 - exp 





-  

t

τ
     +  Po  





exp 





-  

t

τ
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P0

0 1 2 3

P∞

t / τ

P0 < P∞

P0 + 0.632(P- P0)∞
P0 + 0.8697(P - P0)∞

0 1 2 3

P0

P∞

t / τ

P0 > P∞

In the above figure, τ represents the time required to complete 63.2% of the dynamic process.  It is
often assumed that the process is completed during five time constants.

4.2 Examples

4.2.1 Lumped Capacitance Method for Transient Heat Transfer

Q - W = dE
dt( )

c.v.

˙ ˙

Control Volume

Q̇  = - h As (Ts - T∞) Newton's law of cooling

- hAs (Ts - T∞) = ρ cV 
dT
dt  rigid system

h = 
ρcV
As

  
(dT / dt)
Ts - T∞

  ;   T = Ts uniform T

h =  
ρcV
As

 
(dT / dt)
T - T∞

   

dT
T - T∞

  = - 
hAs

ρcV
  dt

ln (T - T∞) = - 
hAs

ρcV
  t + K1 h = constant

T - T∞ = K2 exp 






-  

hAs

ρcV
  t  

I.C.:  t = 0 ; T = To

T - T∞
To - T∞

  = exp 






-  

hAs

ρcV
  t   = exp 





-  

t

 τ t
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where the time constant is defined as τt = 
ρcV
hAs

  

0.368

1.0
T - T∞
To - T∞

tτt

4.2.1 Discharge Process
C.V.

adiabatic, rigid control volume,
equilibrium inside the tank,

no kinetic and potential  energy changes.

Q̇  - Ẇ  + ∑
in

  ṁi hi  - ∑
out

  ṁe he  = ( )Ė  c.v.

Q̇  = Ẇ  =  ṁ i = 0





dE

dt  
c.v.

 = - ṁ e he

d
dt (mu) c.v. = 





dm

dt  
cv

 • he; ⌡
⌠d

dt (mu)cv  = ⌡
⌠





dm

dt  he 

where u is the internal energy and h is the enthalpy

d(mu)c.v. = h dm or

h dm = m du + u dm

(h - u) dm = m du

du
h   -   u = 

d m
m  

dm
m   = - 

V dv
V v   = - 

dv
v  ⇒ 





dm

m  = 
d(V/v)

(V/v)  = 
V
V 

d 1   /   v
Vv   =   -   v   •  

1

v2
 •  dv = -  

d v
v   

h - u = pv; where V is the total volume and v is the specific volume
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du
pv  = - 

dv
v   

or du  +  p  dv  =  0                      

It is also known (from Gibbs Equation) that T ds = du + p dv, s is the entropy; thus,

ds  =  0  

The isentropic process follows

p1vk
1
  = p2vk

2
 where k is the specific heat ratio ≡ 

Cp
Cv 

p2
p1

  = 




v1

v2
  

k
 = 





R T1/p1

R T2/p2
  

k

p2
p1

  = 




T1

T2
  

k
 




p2

p1
  

k
 , or





T2

T1
  =  





p2

p1

(k  -  1)   /  k  
 

m2
m1

  = 




V/v2

V/v1
  = 





v1

v2
  = 





p2

p1
  

1/k

m2
m1

  =  




p2

p1

  k  
 

    Example     Discharge process of Experiment No. 3

A
Pa

Pt

V

It was shown earlier that the discharge process is an isentropic process; conversely,

Pt
P0

  = 




v0

vt
  

k
 = 







ρt

ρ0
 
k

where "t" and "0" denote the tank pressure at time t and initial pressure.  Recall the IG EOS:

Pt = ρt RTt
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Thus, one may relate the system mass to its thermodynamic state.

dm
dt   =   -   ṁe = V 

dρ t
dt  = V 

d (Pt/RTt)
dt  

where V is the volume of the tank.  Substituting the isentropic relationship into the above equation,
one obtains

ṁ e = - V 
d 





pt

p0

1/k
 • ρ0

dt  

ṁ e = - Vρ0



pt

p0
 
1/k - 1

 
1
k  

d (pt/p0)
dt   

ṁe = - 
V ρ0

k  




pt

p0

(1 - k) / k
 
d(pt/p0)

dt  (A)

Let's define the discharge coefficient:

ṁ e = CD ṁ e, i

where cD is the discharge coefficient and ṁ e, i is the ideal mass flow rate.  For a converging
nozzle, the ideal flow rate is the choked mass flow if the tank pressure is higher than the critical
pressure, P*.  The critical pressure, P*, can be determined from

•
Pa
P*

  = 




2

k   +   1   
k / (k -1)

As an example, Pa = 14.7 psia, k = 1.4 for air, P* = 27.8 psia (Pa / P* = 0.5283 ;  P* =
1.8929 Pa)

The choked flow condition has a mass flow rate

ṁ*   =  
A Pt

R Tt
  k 





2

k   +   1  
(k + 1) /  [2(k - 1)]

  (B)

where A is the throat or nozzle opening area.  This equation is valid when Pt > P*.  When Pt / Pa <
P* / Pa, it can be shown that

  ṁ  =  
A Pt

R Tt
 

2k
k   -   1









Pa

Pt

2   /   k
  -  





Pa

Pt

(k  +  1 )   /   k    
          (C)

Substituting the choked flow equation into the mass flow rate expression, i.e., combining Eqs. (B)
& (A), one obtains
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- 
Vρo

k  




Pt

Po
 
(1 - k) 

 
/ k

 
d (Pt/Po)

 d t   = ṁ e = CD 
A Pt

R Tt
 k 





2

k   +   1  
(k + 1) 

 
/ [2(k - 1)]





Pt

Po

(1 - 3k) 
 
/ 2k

 
d(Pt / Po)

 d t   = - CD 
A k kR To

V  




2

k   +   1  
(k + 1) 

 
/ [2(k - 1)]

The solution to the above equation with an I.C. of Pt = Po at t = 0 is

    Choked Flow     

- 
Vρo

k  




Pt

Po
 
(1-k) 

 
/ k

 
d(Pt/Po)

dt   = CD 
A Pt

R Tt
 k 





2

k   +   1  
(k + 1) 

 
/ [2(k - 1)]





Pt

Po
 
(1-k) 

 
/ k

 
d(Pt/Po)

dt   = - CD 
A k

V  
k

ρo
  

Pt

R Tt
  





2

k   +   1  
(k + 1) 

 
/ [2(k - 1)]

=
 
- CD 

A k
V   • 

Pt
Po

   • 
ρoR To

ρo R Tt
  • k 





2

k   +   1  
(k + 1) 

 
/ [2(k - 1)]

= - CD 
Ak k

V   • 
Pt
Po

   • R To 
To
Tt

  • 




2

k   +   1  
(k + 1) 

 
/ [2(k - 1)]

Pt
Po

   • 
To
Tt

   = 
Pt
Po

   • 




Po

 P t
 
(k - 1) 

 
/ 2k

 = 




Pt

Po
  

(k + 1) / 2k





Pt

Po
  

(1 - 3k) / 2k
 • 

d(Pt/Po)
dt   = - CD 

A k kR To
V   





2

k   +   1  
(k + 1) 

 
/ [2(k - 1)]

2k
1   -   k  • 

d(Pt/Po)
(1 - k) / 2k

dt   = - CD 
A k kR To

V   




2

k   +   1  
(k + 1) 

 
/ [2(k - 1)]

Applying the initial condition t = 0, Pt = P0, one obtains





Pt

Po
 
(1 - k)  / 2k

 - 1 = - CD 
A k/ kR To

V   • 
1 - k
2k/

  • 




2

k   +   1  
(k + 1) 

 
/ [2(k - 1)]

 • t





Po

Pt
 
(k - 1) 

 
/ 2k

 = 1 + CD 
A  kR To

V   • 
k - 1

2   • 




2

k   +   1  
(k + 1) 

 
/ [2(k - 1)]

 • t

•
Pt
Po

  =  




1 + CD 

A
V  kR T o • 

k   -  1
2   •  





2

k   +   1  
(k + 1) / [2(k - 1)] 

t
2k / (1 - k)

 

Also, one obtains
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  t   =  
V

CD A  kR To
 




2

k   -   1  




k   +   1

2  
(k + 1) / [2(k-1)]

 










Po

Pt

(k -  1)   /  2k
  -  1  

which can be used to obtain the time to reach P*, i.e. t* by setting Pt = P*.  For t> t*, the mass
flow rate can be obtained by considering Eqns. (A) and (C):

     Unchoked Flow     

d(Pt/Pa)
dt





Pt

Pa

(k   -  1)   /  k  





Pt

Pa

(k -  1)   /  k
  -   1

  = - 
CD Ak kR To

V  




2

k   -   1  
 
 
1 / 2 





Pa

Po
 
(k - 1)  / 2k

A closed form solution was obtained by Owczarek (1964) using the following transformation:

x = 




Pt

Pa
 
( k   -   1 )   /   k

 - 1 

t - t* = 
2k

k   -  1
 






V

CD A
 




k   -  1

2

1   /   2
 
( P o   /  Pa )  

( k   -   1 )   /   2 k

  k kR To

  

          • 





0.492 - 
x
8
 (2x2  + 5)   x 2  + 1 -  

3
8
  ln   x   +   x2  +  1  

    Reference   

Owczarek, J.A.,     Fundamentals of Gas Dynamics   , International Textbook Co., Scranton, Pa,
1964.

5 . Frequency Domain Representation of Time-Series Data

5.1 Fourier Series Representation of Periodic Signals

Consider a periodic signal q(t) with a period T such as the undamped free vibration:

Si
gn

al
 (

V
)

0.005 0.01 0.015 0.020

-4

-2

2

4

Time (s)

If the signal satisfies the Dirichlet conditions, then it can be expressed by a Fourier series.  The
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Dirichlet condition is as follows:

(a) qi must be defined, single-valued and piecewise continuous with a finite number of infinite
discontinuities, or

(b) qi must satisfy⌡⌠
T

q2 (t) dt      < ∞

Condition (b) can be viewed to relate to energy.  Thus, parameters of engineering interest satisfy
this requirement.  Therefore, qi can be expressed by a Fourier series.

 q(t)  = Ao  +  
∑

n =  1
∞     





An cos 





2nπt

T  +  Bn sin 




2nπt

T    

where Ao = 
1
T ⌡⌠

0

T

 q(t) dt (A)

An = 
2
T ⌡⌠

0

T

 q(t)  cos 




2nπt

T   dt (B)

Bn = 
2
T ⌡⌠

0

T

 q(t)  sin 




2nπt

T   dt (C)

The coefficients, Ao, An and Bn can be obtained by performing the integration over a period, e.g.

⌡⌠
0

T

 q(t) dt  = Ao • T + ∑
n =  1

∞
   ⌡

⌠

0

T





An cos 

2nπt
T  + Bn sin 

2nπ t
T  dt 

Applying the orthogonality property of the trigonometry functions, i.e.,

⌡
⌠

0

T

 cos 
nπ t

T  dt  = 0 and ⌡
⌠

0

T

 sin 
nπ t

T   dt = 0

one obtains

A o = 
1
T ⌡⌠

0

T

 q(t) dt  

Multiplying cos 




2nπt

T   to Eq. (A) and sin 




2nπt

T  , to Eq. (B)  one obtains  expressions for An and

Bn.  These coefficients, Ao, An and Bn, are the Fourier coefficients.
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5.2 Fourier Integral

Instead of trigonometry functions, complex exponential functions can be used for Fourier Series:

q(t) = Ao + ∑
n =  1

∞
  





An cos 

2nπt
T  + Bn sin 

2nπ t
T  

cos 
2nπt

T   = 
e

(2nπt / T) i 
+ e

 - (2nπt / T) i

2  

sin 
2nπt

T   = 
e

(2nπt /  T) i 
-  e

 - (2nπt  /  T) i

2   i  

q(t) = Ao + 
∑

n =  1
∞  An 






e

(2nπt  /  T) i 
+ e

 - (2nπt   /  T) i

2   + ∑
n =  1

∞
   Bn 






e

(2nπt  /  T) i 
- e

 - (2nπt   /  T) i

2i  

Let's define Co = Ao for use in a new series

Cn = 
An - i Bn

2   , and C-n = 
An + i Bn

2  

q(t) = Co + 
∑

n =  1
∞  Cn e

(2nπt / T) i 
+ 

∑

n =  1
∞  C-n e

 - (2nπt / T) i

 q( t )  =  
∑

n = -∞
∞ C n  e

(2nπ t   /  T)   i
     

The coefficients in the complex exponential function series can also be obtained by

Co = 
1
T ⌡⌠

0

T

 q(t) dt 

Cn = 
1
T ⌡⌠

0

T

  q(t) e 
- (2nπt / T) i 

dt

C-n = 
1
T ⌡⌠

0

T

  q(t) e 
- [ (- 2nπt) / T] i 

dt = 
1
T ⌡⌠

0

T

  q(t) e 
+ (2nπt / T) i 

dt
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or C n = 
1
T ⌡⌠

0

T

 q(t) e 
- (2nπ t   /  T) i 

d t  ; where - ∞ < n < ∞

Let's consider the transition from a periodic to an aperiodic function by allowing the period T to
approach infinity.  Conversely, the function will never repeat itself; thus, it becomes aperiodic.
Substituting Cn's into the series summation, one obtains

q(t) = 
∑

n = -  ∞
∞    









1

T ⌡⌠
0

T

 q(τ) e 
-  (2nπτ  / T) i 

dτ   • e 
(2nπt / T) i

q(t) =  
∑

n = -  ∞
∞    









1

T ⌡⌠
0

T

 q(τ) e 
-  (2nπτ  / T) i 

dτ   • e 
(2nπt / T) i  

• 
π
2T  • 

2T
π  

q(t) =  
∑

n = -  ∞
∞   

1
2π 











 ⌡⌠
0

T

 q(τ) e 
-  (2nπτ  / T) i 

dτ   • e
 (2nπt / T) i  

• 




2π

T  

Define ωn = 
2nπ
T   ,  ∆ω = 

2π
T  

q(t) = 
∑

n = -  ∞
∞     









1
2π  •  e  

i  ω n   t
  •  ⌡⌠

0

T

 q(τ ) e 
- i ω n  τ

 dτ    ∆ω

Let's consider T →∞ , or  ∆ω → 0

q(t) = 
lim
T→∞ 

∑

n = -  ∞
∞    









1
2π    e  

i  ω n   t
   ⌡⌠

0

T

 q(τ )    e 
- iω n τ  dτ     ∆ω

Applying a linear transformation from  ⌡⌠
  0

T

   to ⌡⌠
-  T   /   2

T   /   2

 , one obtains

q(t) = 
⌡


⌠

- ∞

∞

e   i  ω   t

2π  










⌡⌠

- ∞

∞

 q(τ )  e - i ω  τ  d τ    dω
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q(t) = 
1
2π ⌡⌠

- ∞

∞

 e i ω  t Q(ω ) dω  

 Q(ω )  =  ⌡⌠

- ∞

∞

 q (τ )  e   - i  ω  τ   d τ  

    Remarks on Q(       ω       )   
(a) Q(ω) is the Fourier transform of q(t); it is also defined as

Q(ω) = 
1
2π ⌡⌠

- ∞

∞

 q(τ) e - i ω  τ dτ  ,  and

 q(t) = ⌡⌠

- ∞

∞

 Q(ω ) e i ω  t dω  

(b) Q(ω) describes q(t) in terms related to amplitude and frequency contents;

ω = 2π • f, where f is the frequency.

(c) | | Q(f)   2 or | |Q(ω)   2 is a measure of the power contained within the dynamic portion of q(t)

| | Q(f)   2 = Re [Q(f)]2 + Im [Q(f)]2

where Re [Q(f)] and Im [Q(f)] are the real and imaginary parts of Q(f).

(d) It can be shown that Q(f) = A(f) - i B(f), and

| | Q(f)   2 = 
1
2   C2(f) and C2(f) = A2(f) + B2(f)

Thus, for periodic functions, the amplitude and phase shift are respectively

C(f) = 2   | | Q(f)  2  , and φ(f) = tan-1 
Im Q(f)
Re Q(f) 

(e) Power Spectrum
    Signal power vs. frequency    

[q(t)]2
2   = ⌡⌠

0

∞

 Q(f) df 

where the static portion of the energy has been removed.
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[q(t)]2
2  

 
f ± δf /2 

= ⌡⌠

f - 
δ f
2

f + δ f
2

 Q(f) df 

5.3 Discrete Fourier Transform

Recall the Fourier Series expressed in complex exponential function

q(t) = ∑
n = -  ∞

∞
 Ck  e 

(2nπt / T) i

Ck = 
1
T ⌡⌠

0

T

 q(t)  e  
- (2kπt / T) i 

dt

Consider N discrete data at δt intervals

Ck = 
1

Nδt
  • 

∑

r =   0

N -  1   q (rδ t) e 
-i (2kπ  r δ t  /  Nδ t)   

  δt

Ck = 
1
N ∑

r  = 0

N -  1

 q(rδt) e  
- (2πrk) / N

Resolution:
1

Nδt
 

Discrete frequency: k = 0, 1, 2, . . . , 
N
2   - 1; and fk = 

k
N  • 

1

δt
 

An algorithm was developed by Cooley and Tukey to compute the discrete Fourier transform is
known as the fast Fourier Transform (FFT).  The first FFT algorithm was developed by Gauss.
Instead of N2 operation of discrete Fourier transform, the FFT algorithm takes only N log2N
operations.

6 . Forced System

6.1 First-Order System

Fo cos Ωt

Fo

2π / Ω

F(t) = Fo cos Ωt Fo: amplitude of the forcing function

c
 dx
dt   + kx = Fo cos Ωt Ω: frequency of the forcing function, radian/s

The solution of the equation is:
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x = A1 exp 




-  

t

τ
    +  

F o  /  k

1 + (τ  Ω)2
 cos (Ωt  -    φ )  

where the first term is the general solution and the second term the particular solution.

A1: determined from the initial condition, i.e., t = 0, x = xo,  A1 can be found

τ: time constant, τ ≡ c / k

φ: phase lag, φ ≡ tan-1 (Ωc / k) = tan-1 



2πτ

T  

T: the period of excitation in s, T ≡ 
2π
Ω  

The homogenous solution (the first part) of the above solution represents the transient response,
while the particular solution denotes the steady-state relationship, as t » τ.  At steady state limit, the
equation becomes

x = 
F o / k

1 + (τ  Ω)2
  cos (Ωt - φ)

Define xs ≡ Fo / k , the static response for a static input Fo is

x =  
xs

1+ (τ Ω)2
  cos (Ωt - φ)

The maximum displacement is

xd = 
xs

1 + (τ  Ω)2
  (it occurs when Ωt - φ = 0)

xd
xs

  =  
1

1 + (τ  Ω)2
   = 

1

1 + (2π  τ  / T)2
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6.2 Second-Order System

c k

F = Fo cos Ωt

m 
d2x

dt2
 + c 

d x
dt  + kx = F(t)   ; F(t) = Fo cos Ωt

The solution is

x = 
(Fo / k) cos (Ωt - φ)

{ }[ ]1 - (Ω / ω n)2 2  + [ ](c / cc) (Ω / ω n) 2 1   /   2
 

φ: phase angle, φ ≡ tan-1 
2(c / cc) (Ω / ωn)

1 - (Ω / ω n)2
 

ωn: natural frequency, ωn ≡ k
m 

cc: critical damping coefficient, cc ≡ 2 mk 

Consider a general system and define Pd and Ps similar to the first-order system:

Pd = 
(Fo / k)

{ }[ ]1 - (Ω / ω n)2 2  + [ ](c / cc) (Ω / ω n) 2 1   /   2
   , or

  
P d
Ps

  =    
1

{ }[ ]1 - (Ω / ω n)2 2  + [ ]2  ζ  (Ω   /  ω n) 2 1   /   2
  and Ps  ≡ 

Fo
k  

where ζ ≡ c / cc, critical damping ratio

    Example   Oscillation of Liquid Column

Negligible gas density; no surface tension; viscous force following the laminar pipe flow;
tube diameter:  d; liquid column length:  L
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p'∞

g

      dx
      dt
u=

τ = 8 µ
d • u  =8 µ

d
dx
 dtl

Flow

p'i

x
Let's use ρ = ρf; µ = µf; Pi = P'i - P'∞ (i.e., gage P.)

πd2

4   ρL 
d2x

dt2
    =   

πd2

4   Pi  - 2g



πd2

4 ρ   x  -  (πdL) 
8µ
d  

dx
dt  

            acceleration    pressure     unbalanced       viscous force
     gravity force

πd2

4   ρL 
dx2

dt2
  + (πdL) 





8µ

d  
dx
dt   + 2g 



πd2

4  ρ   x = 
πd2

4   Pi





L

2g  
d2x

dt2
  + 

16µL

d2ρg
 
dx
dt   + x = 

1

2ρg
  Pi;      

a2
ao

 ẍ  + 
a1
ao

 x
.
 + 

ao
ao

  x = 




bo

ao
  xi

     Undamped Natural Frequency    

ωn = 
2g
L   







ao

a2
   

    Damping Ratio    

ζ = 
8µ
ρd2

 
2L
g  





a1

2 aoa2
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7 . Numerical Solvers

7.1 Maple for Second-Order ODE-- 100 Hz undamped forced oscillation

• read `ODE.m`;  (Followed by Enter Key in Mac)

• f:=(t,x,z) -> z;
g:=(t,x,z) -> -c/m*z-k/m*x+p*a/m;
k:=39478.4176;
m:=.1;
c:=0;
p:=3447400;
a:=.000071256;
dpinit:=[0,0,0];
dppts:=rungekutta([f,g],dpinit,.0001,200);
plot ({makelist(dppts,1,3)});  (Followed by Enter Key)

                              f := (t,x,z) -> z
                                        c z   k x   p a
                      g := (t,x,z) -> - --- - --- + ---
                                         m     m     m
                               k := 39478.4176
                                   m := .1
                                   c := 0
                                p := 3447400
                               a := .000071256
                             dpinit := [0, 0, 0]
          dppts := array(0 .. 200,, [
                       0 = [0, 0, 0]
                       1 = [.0001, .00001227835598, .2454863045]
                       2 = [.0002, .00004906496154, .4900037869]

                       197 = [.0197, .0001102170366, -.7325936405]
                       198 = [.0198, .00004906674309, -.4900100610]
                       199 = [.0199, .00001227951232, -.2454926365]
                                              -9            -5
                       200 = [.0200, .52660*10  , -.63650*10  ]
                   ])

0.005 0.01 0.015 0.020

-4

-2

2

4
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7.2 Matlab Example-  fft Analysis

% This is for 1 kHz, for 10 kHz, need to change dt and m2
%   draw Power spectral density of given data set.
%   data file name should be dat1.dat
%             does not need be power of 2.

    load dat1.dat
    dt=0.001
    y=dat1(:,1);
    n=size(y);
    x=0:dt:(n-1)*dt;
    ymean=mean(y);
    y=y-ymean;
    m=n(1,1);
    xi=x(1);
    xf=x(m);
    ts=(xf-xi)/(m-1);
    fs=1/ts;
    Y=fft(y);
    Pyy=Y.*conj(Y);
    n=size(Pyy);
    m=n(1,1);
    m2=m/20;
    f=fs/m*(0:m2-1);
    plot(f,Pyy(1:m2))
%    f=fs/m*(0:m-1);
%    plot(f,Pyy)
    title('Power spectral density')
    xlabel('Frequency (Hz)')

Sample FFT Plot using the data file dat1.dat:

0
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x 105

0 10 20 30 40 50
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Power Spectral Density


