Fluids Kinematics (Acceleration) and
Reynolds Transport Theorem (RTT)



Lagrangian vs. Eulerian Viewpoint

e Lagrangian: Keeps track of individual fluid particles,

drp(t)

Ve(t) = —=—=up()i +vp(t)j + wp(O)k

dVP (t) duP (t) . dvp (t) . de (t) —~
ap(t) = dt dt L+ dt Jt dt k

e Eulerian: Focuses on a fixed point x = xi + yj + zk in space,
V(x,t) =u(x t)i+v(xt)j +w(x t)iE

a(x,t) = ay(xt)i+ ay(g, t)j + a,(x, t)k



Acceleration in the Eulerian Approach

For a simple 1D flow,

u(x + Ax, t + At) —u(x,t)

Ax = Al%r—r»lo At

u(x + Ax, t + At) —ul(x, t + At) + u(x, t + At) —u(x, t)

u(x + Ax, t + At) —u(x,t + At) Ax

- Al%r—r}o At
oulx, t+ At) —u(x, t)
= lim +
At—0 At At—0 Ax
(Ax—0)
ou(x,t) ou(x,t)
LA, = 5% + u(x,t) - e

For a general 3D flow,

or,

DV oV
- t QE - =
local acc. convective acc.
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Note:
D —6+V 74
Dt at —
where,
V= “+a“+ak
“ox' "oy Taz

Referred to as the material derivative or
total derivative or substantial derivative.
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Example: Acceleration

An incompressible 2D flow has the velocity components u = 2y and v = 8x. Find (a) the
acceleration and (b) the pressure distribution along a streamline that passes through
the origin (x,y) = (0,0) where the pressure is p,. Assume incompressible and

irrotational flow.
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Velocity vector field V = 2yi + 8xj.

ou
=57 +u6x +vay =0+ (2y)(0) + 8x(2) = 16x

_ 9 9% 04 2)@®) + (80(0) = 16
=9 T ox T Vay T Y XRE) = 20Y

S a = ayl+ay,j = 16xi + 16yj

a=lal = [a%+a%=(16x)2 + (16y)2

Wa=164x2% + y?



Example: Acceleration — Contd.

e Euler equation*

Vp = —pa
or
dp
3 = Pax=—16px (1)
dp
oy - P = —16py (2)

Integrate (1) w.r.t x,

9,
| S2ax = [ (~16pm)dx = =8px* + £ 0D =p ()
Differentiate (3) w.r.t y, then by using (2),

op df (y)
LI M a—
3y 0+ dy 6py

or

f) = j(—16py)dy =—8py*+C (4)

*In the horizontal plane without gravity



Example: Acceleration — Contd.

Combining (3) and (4),

Since p = py at (x,y) =(0,0),
po=0+0+C

or
C =po
Finally,
“p=po—8p(x*+y*) (5)



Example: Acceleration — Contd.

Streamline equation

or

dx _dy

2y Bx (6)

1]

Integrate (6) by using separation of variables, then
ijdy = j8xdx

y? =4x*+C

e

\
\
\

or

Streamlines for the velocity field
V =2yi + 8xj.

For the streamline through the origin (x,y) = (0,0), C = 0. Thus,
~y? =4x%  (7)
By plugging (7) into (5),
p =po — 8p(x? + 4x?)
Thus,
*p = po — 40px?
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Example: Acceleration — Contd.

Alternatively, by applying the Bernoulli equation,

1 1
p+5pVE=po+5pVs

or

1 2 2
P=P0+§P(V0 - V)

where,

V=|V|=vVu?+v2 =4y + 64x2

Along the streamline y? = 4x,

V = 4(4x2) + 64x2 = y/80x2

and

Vo = V)x=oy=0 = V4(0)2 + 64(0)2 = 0
Thus,

1 2
P =D+ Ep l(O)z - (\/ 8OX2) ] = Po — 4Opx2



Laws of Mechanics

1. Conservation of mass:

2. Conservation of linear momentum:

3. Conservation of angular momentum:

4. Conservation of Energy:

dm 0
dt
d
F =ma=—(mV)
M—dﬂ
—  dt
dE
dt

The laws apply to either solid or fluid systems
Ideal for solid mechanics, where we follow the same system
For fluids, the laws need to be rewritten to apply to a specific region in

the neighborhood of our product (i.e., CV)



Extensive vs. Intensive Property

Governing Differential Equations (GDE’s):

d : :
—mmV,E\N=(0,F,Q — W
dt (_,—_/) ( £ ) \4
B
e B =The amount of m, mV, or E contained in the
total mass m; Extensive property — Dependent on i
mass
e [ (or b) =The amount of B per unit mass;
Intensive property — Independent on mass 5 b= Bim
_dB
- dm m 1
B = f B pdV mV \Y
¥ =dm
If homogeneous,B E e

= — B =
5 — and pm



System vs. Control Volume

e System: A collection of matter of fixed identity

— Always the same atoms or fluid particles
— A specific, identifiable quantity of matter

e Control Volume (CV): A volume in space
through which fluid may flow

— A geometric entity
— Independent of mass



Fixed CV

Control
surface

|

| |
D |

| |

|\
RV

0P |

- |

CV fixed at a nozzle

Examples of CV

Moving CV Deforming CV
Control
surface
| e /_ _______ V
| Il—'- Control
|
| : surface
| i \
| : r\. ™
| 14 | : R\
] | O— || (@O
| : | b
| |
e N é L //4
(b) (¢)
CV moving with ship CV deforming within cylinder
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Reynolds Transport Theorem (RTT)

* An analytical tool to shift from describing the
laws governing fluid motion using the system
concept to using the control volume concept



RTT for a Simple Fixed CV

— — — Fixed control surface and system
boundary at time r

Variable area duct

At time t:

SYS =CV

Bsys (t) = Bey (1)

57:020 Fluids Mechanics Fall2013
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RTT for a Simple Fixed CV

= |

! — 8, =V,
!

! I

—_—

—_—

(1)

—_—

[
[
[
I
[
L

— — — Fixed control surface and system
boundary at time ¢

— — — System boundary at time ¢ + 6¢

Attime t + Ot:

SYS = (CV =) + I

Bsys(t + 6t) == Bcv(t + 6t) - 6BI + 5BII
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RTT for a Simple Fixed CV — Contd.
- Time Rate of Change of By

DBsys — lim Bsys (t + St) _ Bsys(t)

Dt 5t—0 ot

Since Bays(t) = Bey(t) and Bays(t + 8t) = Bey(t + 8t) — 6B; + 6By,

DBgys - {Bev(x,t + 8t) — 8B, + 8By} — Bey(x, t)

Dt 5t—0 ot

DBsys . Bev(x,t +6t) — Bey(x, t) . 6By 5B,
= lim + lim— - im —
Dt 5t—0 ot 5t—0 Ot 5t—0 Ot
——— v ~—————— N— ——
Time rate of 1) Change of B 2) Amountof B 3) Amountt of B
change of B within CV over &t flowing out flowing in
within the through CS through CS

system over 6t over 6t

Eqg. (1)



RTT for a Simple Fixed CV — Contd.
- The first term of RHS of Eq.(1)

Bey(x,t 4+ 6t) — Bey(x,t)  0Bcy
- ot

lim
ot—0 ot

In a general form,
Bey = | BpdV

Thus,




RTT for a Simple Fixed CV — Contd.
- The 2"d term of RHS of Eq.(1)

oV

N R N

t=0t

S'I*ZH - A2 . V25t
and
omy = po¥q; = pV,A,0t

The amount of B flowing out of CV through A, over a short
time 6t:

~ 0By = pomy = fpV,A,0t
Thus,

. 0By _
(}%LHOW = BpV2A; = Boyt

In a general form (see Appendix),

Bout = BpV - ndA
CSout



RTT for a Simple Fixed CV — Contd.
- The 3™ term of RHS of Eq.(1)

oY,

- V. Ot

5"11 - Al . V]_St
and
om; = pd¥; = pV, A6t

The amount of B flowing in to CV through A, over a short
time 6t:

o 5BI = ,85m1 = ﬁleA]_St
Thus,

lim 220 = gov,a, = B
dim —= = fpV14, = Bin

In a general form (see Appendix),

Bin - = BpV - ndA
CSin



RTT for a Simple Fixed CV — Contd.

Consequently, the relationship between the time rate of change of B for
the system and that for the CV is given by,

DB

)
= _— | Bpdv+ BpV - fidA — (—

BoV - ﬁdA)
Dt 9t )y CSout

Bout Bin

With the fact that CS = CS,yt + CSip,

DBsys 0 ~
=—| PBpdV+ | BpV- ndA
bt It Jey CS
Time rate of Time rate of
change of B = change of B + Net flux of B

through CS =

within a system within CV
Bout - Bin



Appendix: RTT for a Fixed CV



RTT for a Fixed CV

P A At time t: SYS = CV
//”'L‘““H‘:\\
N
;!/ \‘\x\\ Bsys (t) = Bey(t)
/‘fi \\ \
& \
Inflow f{" VT .
\f/ CV-1 } i At time t + 6t: SYS=(CV—1) + 1l
‘j/ l
o i
\\\ y /‘/\Outﬂow Bsys (t + 6t)

— — — Fixed control surface and system
boundary at time ¢

— — — System boundary at time ¢ + o1
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RTT for a Fixed CV — Contd.
- Time Rate of Change of By,

DBsys lim Bsys (t + St) - Bsys (t)

Dt 5t—0 ot
li {BCV(£'t+5t) _5BI +5BII}_BCV(£it)
= 11m
5t—0 ot
D By . Bcv(& t+ 5t) — BCV(&: t) . 0By . 0B
= lim + lim— — lim —
Dt 5t—0 ot 5t—0 Ot 5t—0 Ot
~—— . — ~—————— ~———
Time rate of 1) Change of B 2) Amountof B 3) Amountt of B
change of B within CV over &t flowing out flowing in
within the through CS through CS
system

over 6t over 6t

Eqg. (1)



RTT for a Fixed CV — Contd.
- The first term of RHS of Eq.(1)

Bry(x,t + 6t) — Bry(x,t 0B 0
lim CV(_ ) cv(x,t) _ 98¢y _ _f Bpdv

—

Time rate of change of
B within CV



RTT for a Fixed CV — Contd.
- The 2"d term of RHS of Eq.(1)

OMoyur = POV
and

O¥ = 6A-6¢,, = O6A - ( éf cosH) = §A - (VétcosB)
=V 5t

Thus, the amount of B flowing out of CV through 64 over a short time §t:
s 0Boyt = Bémyy: = LpV cos 0 6tHA

Outflow
portion of
control
surface

=>

oV =0€, 0A 5L
A il

0A
\ \
\#'-—

o X
~se=ver V L“ae\.,/
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RTT for a Fixed CV — Contd.
- The 2"d term of RHS of Eqg.(1) — Contd.

By integrating 6 B,,,,+ over the entire outflow portion of CS,

6B, = 6t BpV cos 8 dA
CSout

Thus,

——————

. 6BII o
llm—=f PpV cos8 dA = Byyt
C
i.e., Out flux of B through CS

Note that V cos8 =V - n,

Bout = BpV - ndA
CSout



RTT for a Fixed CV — Contd.
- The 3™ term of RHS of Eq.(1)

(S'mm = p6¥
and
S¥ = 6464, = 5A - ( 8¢ (— cos 9)) = 8A - (=Vé&t cos6)

e N e’
=Vt <0

Thus, the amount of B flowing out of CV through 64 over a short time §t:
Inflow ~ 0Bjpy = fomy, = —LpV cos O 6t6A

portion of
control surface

A=

/~
v

5V = 8¢, 5A
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RTT for a Fixed CV — Contd.
- The 3™ term of RHS of Eq.(1) — Contd.

By integrating 6 B,,,,+ over the entire outflow portion of CS,

0B, = —5tj (BpV cosB)dA
CSin
Thus,

(BpV cos 6)dA = By,

. 0By f
lim — = —
5t—0 Ot CSin

i.e., influx of B through CS



RTT for a Simple Fixed CV — Contd.

Consequently, the relationship between the time rate of change of B for
the system and that for the CV is given by,

DB

)
= _— | Bpdv+ BpV - fidA — (—

BoV - ﬁdA)
Dt 9t )y CSout

Bout Bin

With the fact that CS = CS,yt + CSip,

DBsys 0 ~
=—| PBpdV+ | BpV- ndA
bt It Jey CS
Time rate of Time rate of
change of B = change of B + Net flux of B

through CS =

within a system within CV
Bout - Bin
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