November 30, 2015

NAME

Fluids-ID
Quiz 14. Water is circulated from a large tank, through a filter and a back to the tank with $\mathrm{L}=200 \mathrm{ft}$ long pipe system as shown in Figure. The power added to the water by the pump, P , is $200 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s} .\left(\rho=1.94\right.$ slugs $/ \mathrm{ft}^{3}$; $\mu=$ $\left.2.34 \times 10^{-5} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}^{2} ; g=32.2 \mathrm{ft} / \mathrm{s}^{2} ; 1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}\right)$

Energy Equation

$\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{p}=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}+\frac{V^{2}}{2 g}\left(\frac{f L}{D}+\sum K_{L}\right)$
Where V is the average velocity throught the pipe

Friction Factor Equation (The Haaland eq.)

$\frac{1}{\sqrt{f}}=-1.8 \log \left[\left(\frac{\varepsilon / D}{3.7}\right)^{1.11}+\frac{6.9}{R e}\right]$
a) Simplify energy equation using the given conditions and determine velocity, V, as a function of friction factor, f. (Hints: Apply the energy equation beginning from the reservoir surface (1) and end at the same reservoir surface (2). You will also need to use eq. $P=\rho \mathrm{g} Q h_{p}$)
b) Use the given conditions and determine Reynolds number, $R e=\rho V D / \mu$, as a function of velocity, V.
c) Determine velocity V by following the steps listed below

1) Assume $f=0.04$ as your first guess and find V using the equation from (a)
2) Find $R e$ using the equation from (b) and the V from the previous step
3) Find a new f using the Haaland equation and Re from step 2)
4) Find a new V using the f from step 3) and the equation from (a)
5) Repeat the steps 2) through 4) until f is converged to the thousandth decimal point
d) Determine the flowrate through the filter.

Note: Attendance (+2 points), format (+1 point)

