September 19, 2016

NAME

Quiz 3. A tank wall has the shape shown in the figure. The length of the tank (into to the paper) is $4-\mathrm{ft}$. $\left(\gamma_{\text {water }}=62.4 \mathrm{lb} / \mathrm{ft}^{3}\right)$
(a) Determine the magnitude and location of the horizontal component of the force on curved section AB.
(Hint: Moment of inertia for a rectangle $I=\frac{b h^{3}}{12}$)
(b) Determine the magnitude of the vertical component of the force on curved section AB. (Hint: Area of quarter circle is $\frac{\pi r^{2}}{4}$)

Note: Attendance (+2 points), Format (+1 point)

Solution:

(a)

$$
\begin{aligned}
& F_{H}=F_{1}=\gamma h_{c 1} A_{1} \\
& F_{H}=\left(62.4 \frac{l b}{f t^{3}}\right)(15 f t)\left(6 \times 4 f t^{2}\right)=22500 \mathrm{lb} \\
& y_{H}=\frac{I}{y_{c} A_{1}}+y_{c} \\
& y_{H}=\frac{\frac{4 \times 6^{3}}{12} f t^{4}}{(15 f t)\left(6 \times 4 f t^{2}\right)}+15 f t=15.2 \mathrm{ft}
\end{aligned}
$$

(+2 point)
(+0.5 point)
(+1.5 point)
(+0.5 point)
(b)

$$
\begin{align*}
& F_{2}=\gamma h_{c 2} A_{2} \\
& W=\gamma V \\
& F_{V}=F_{2}-W=\gamma\left[h_{c 2} A_{2}-V\right] \tag{+2point}\\
& F_{V}=\left(62.4 \frac{l b}{f t^{3}}\right)\left[(18 f t)(6 \times 4 f t)-\left(\frac{\pi 6^{2} f t^{2}}{4}\right)(4 f t)\right]=19900 \mathrm{lb}
\end{align*}
$$

(+0.5 point)

September 19, 2016

Alternative way of calculating vertical force

$$
F_{V}=\gamma V \quad \text { (+2 point) }
$$

V is the volume above dome

$$
F_{V}=\left(62.4 \frac{l b}{f t^{3}}\right)\left(18 \times 6 \times 4 f t^{3}-\pi 6^{2} \times 4 f t^{3} / 4\right)=19900 l b
$$

(+0.5 point)

