10.69 A pipeline is to be designed to carry crude oil $(S = 0.93, \nu = 10^{-5} \text{ m}^2/\text{s})$ with a discharge of 0.10 m³/s and a head loss per kilometer of 30 m. What diameter of steel pipe is needed? What power output from a pump is required to maintain this flow?

Solution:

$$S = 0.93$$
 Steel pipe $v = 10^{-5} m^2/s$, $Q = 0.1 m^3/s$, $h_f = 30m$ per km=1000m Find D and $P = Q\gamma h_f$ per km
$$h_f = f \frac{L}{D} \frac{V^2}{2g}$$

$$D = \frac{fL}{h_f} \frac{V^2}{2g} = \left[\frac{8LQ^2}{\pi^2 g h_f} \right]^{1/5} f^{1/5} = \left[\frac{8 \times 1000 \times .1^2}{\pi^2 \times 9.81 \times 30} \right]^{1/5} f^{1/5} = 0.4875 f^{1/5}$$

Assume
$$f = 0.015$$
, $\Rightarrow D = 0.21m$
 $Re = \frac{VD}{v} = \frac{4QD}{\pi D^2 v} = \frac{4Q}{\pi D v} = 6 \times 10^4$
 $k_s/D = 0.0002$, $\Rightarrow f = 0.022$
 $D = 0.227m$ or $22.7cm$
Choose $D = 23cm$

$$P = Q\gamma h_f = 0.1 \times 0.93 \times 9810 \times 30 = 27.4 \, kW/km$$