6.79 An incompressible, viscous fluid is placed between horizontal, infinite, parallel plates as is shown in Fig. P6.9#. The two plates move in opposite directions with constant velocities, U_1 and U_2 , as shown. The pressure gradient in the x direction is zero and the only body force is due to the fluid weight. Use the Navier-Stokes equations to derive an expression for the velocity distribution between the plates. Assume laminar flow.

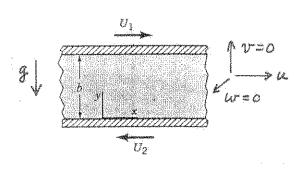


FIGURE P6.9#

For the specified conditions, v=0, w=0, $\frac{\partial f}{\partial x}=0$, and $f_x=0$, so that the x-component of the Navier-Stokes equations (Eq. 6.127a) reduces to

$$\frac{d^2u}{dy^2} = 0$$
of Eq.(1) wields

Integration of Eq.(1) yields

$$u = C_1 y + C_2 \tag{2}$$

For y=0, u=-U2 and therefore from Eq.(2)

$$C_2 = -U_2$$

For y = b, u = U, so that

$$U_i = C_i b - U_i$$

or

$$C_{i} = \frac{U_{i} + U_{2}}{b}$$

Thus,

$$u = \left(\frac{U_i + U_2}{b}\right) y - U_2$$