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Abstract

This paper compares and contrasts the issues involved with implementing computationally
intensive medical imaging algorithms on a multiple-instruction, multiple-data (MIMD) and
single-instruction, multiple-data (SIMD) parallel processing computers. Implementation is-
sues and timing analysis are presented for a 3D medical image registration algorithm imple-
mented on a 16 processor SGI Challenge MIMD computer and on a 128 x 128 processor
MasPar SIMD computer. The MIMD implementation is shown to have nearly N-times
performance improvement with respect to a single processor when using N processors. It is
also shown that the MIMD implementation is a minimum of four times faster than the SIMD
implementation. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Parallel processing; Global shape models; Imaging registration; 3D imaging; High speed
computing

1. Introduction

Medical imaging systems collect a massive amount of data in a short time and
require fast computers for both image reconstruction and image analysis. Parallel
processors in medical imaging are useful for real-time or near-real-time processing.
Real-time imaging provides the physician or technician the ability to see the results
of an imaging scan while the patient is still present. If the scan is corrupted due to
patient motion or some other reason, it can be reacquired immediately without the
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need for scheduling an additional scan afterwards. If the scan shows an abnormality
it would also be possible to acquire another scan at a higher resolution or over a
larger field of view. In the case of functional scans such as positron emission tom-
ography (PET), single photon emission computed tomography (SPECT), and
functional magnetic resonance (fMRI), immediate feed back can be used to modify
the current task under examination. In each of these cases, the instant or near-instant
feedback provides a tremendous cost savings in scanner time. This reduction can be
used to offset the possible increased cost of a high-performance parallel computer.
Investigators * at Carnegie Mellon University, University of Pittsburgh Medical
Center and the Pittsburgh Supercomputing Center recently demonstrated near-real-
time processing of fMRI data using a Cray T3E massively parallel computer and a
high-speed computer network. A subject was scanned inside an MRI scanner at the
University of Pittsburgh Medical Center while doing an experimental mental task.
The fMRI data was transmitted via high-speed network to the Pittsburgh Super-
computing Center, was processed, and transmitted back to the operating room. The
Cray T3E at the Pittsburgh Supercomputing Center converted the raw fMRI data
into 3D images, compensated for head movement and identified active areas of the
brain. The fMRI reconstruction computed on the Cray T3E took about 10 s and was
accomplished by distributing the computation over 512 application processors.

2. 3D image registration

Image registration is an important area of modern medical image analysis. His-
torically, the most important application of image registration has been for studying
PET brain activation data [24-26]. Due to the poor image quality of a PET image, a
PET experiment must be performed on multiple individuals and the results averaged.
The data from each individual is registered to a common coordinate system such as
the Talairach atlas [22] to remove individual anatomical shape difference and aver-
aged to generate the final PET image. More recently, image registration has been
used to generate individualized atlases of the head [18,8,2,16,10], for studying
morphological changes in the brain due to disease [13,12], for studying craniofacial
deformities [3-5], and radiation dose tracking in radiotherapy of cervical cancer [9].
Fig. 1 shows an example of how a normal anatomy as defined by a CT image volume
can be used to measure the location and magnitude of a craniofacial deformity. The
template shown in the top row was deformed in 3D - using a linear elastic defor-
mation model - into the shape of the dysmorphic anatomy shown in the bottom row.
The deviation from the normal shape of the template is encoded in the transfor-
mation function and can be used to classify the degree of deformity, aid in corrective
surgical planning, and evaluate the effectiveness of the surgery.
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Fig. 1. 3D image registration can be used to measure cranjofacial deformities imaged via CT. The top row
shows 3D skin and bone surfaces of the template (a scan from a normal 3 month old infant), the middle
row shows the 3D linear elastic transformation of the template into the shape of the target, and the bottom
row shows the target data set (a scan from 3 month old infant with unilateral coronal craniosynostosis).

2.1. The linear elastic transformation model

The 3D linear elastic transformation model [18,7,23] is used to generate global
non-rigid deformations of the template image volume. The goal is to find the
mapping # from the coordinates x € Q of a template image T(x) to a target image
S(X), i.e., the mapping h:  — Q is defined as 4(x) = x — u(x) where u(x) is called
the displacement field.

A distance measure D(u) is defined to measure the disparity between the template
T and target S images with respect to the applied displacement «. The optimization
problem used to estimate the best transformation is defined as

u=arg mum/ (|Lu||* + D(u). (D)

Examples of vahd distance functions include the Gaussian squared error distance
JIT(h(x)) — S(x)|*dx, the correlation distance [1,11], the minimum intensity variance
dlstance [20,26] and the Mutual Information distance [15,21,14].

For the remainder of the paper, the minimization problem is assumed to be of the
form
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i = arg min y/|T(x —u(x)) — S(x)] dx + /|Lu|2, (2)
u
Q Q

where gamma is a constant and the displacement field u is constrained to have the
form

d
x) = Z#k¢k(x)- (3)
k=0

The basis functions {¢} are the eigenfunctions of the linear differential operator L
defined below.

The optimization is accomplished by solving a sequence of optimization problems
from coarse to fine scale by estimating the complex basis coefficients {4, }. This is
analogous to multi-grid methods but here the notion of refinement from coarse to
fine is accomplished by increasing the number of basis components. As the number
of basis functions is increased, smaller and smaller variabilities between the template
and target are accommodated. The basis coefficients {u, } are determined by gradient
descent, i.e.,

o) _ o _ 4 OH(u™]S)
= —

e aﬂk ’ (4)
where
(")
afg(:,, V{ = u"(x)) = SCNVTx = 4 (x)) - $yx) dx + A", ()
u™(x) = Zﬂ,ﬁ")d;,((x). ©
k=0

4 is a fixed step size and 4 are the eigenvalues of the eigenvectors ¢,.

We assume that the linear differential operator L is of the form
(—aV? —bVV +¢)f, p>1 and the eigenfunctions and eigenvalues of L satisfy
Loy (x) = A, (x). Assuming cyclic boundary conditions on the unit cube, the
eigenfunctions and eigenvalues have the form given in [17]

| »
300 = o o, 0p, ] Te T, A = (a4 B) (@R + 0, + ) +e,

2 2 —j
¢,E )(x) = a,(‘ )[—wkz, a)k,,O]Te Honx) A,(Cz) = A,(f) = a(cu,f1 + w,fz + w,fs) + e,
o (x) = o” [y, 0y, 1, 0, —(@} + o})] e S (7)

with ¢"(x) = [1,0,0]", ¢’ (x) = [0,1,0]", and ¢ (x) = [0,0,1]" for k =[0,0,0]".
We  define wk = [2n|k|/N, 2=|k,|/N, 27z|k3|/N] for ke{-N/2,...,-1,0,

.,N/2} and o{" = =1/} + @}, + o}, o) = 1//w} + o}, and o = o{Va®.
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3. Parallel implementation

A massively parallel computer is defined to be a computer with more than 1000
processor elements (PEs) and is classified as either a single-instruction stream,
multiple-data stream (SIMD) or a multiple-instruction stream, multiple-data stream
(MIMD) parallel architecture. SIMD systems are used for problems that require a
large number of computations in which all the PEs perform the same operation in
parallel. On each clock cycle, each PE performs the same operation on its private
data. MIMD systems are used for algorithms that can be broken up into separate,
independent parts to solve. Each part is assigned to a separate processor and all the
parts are solved simultaneously.

In general, the PEs used in SIMD machines require less computer chip area and
are less complex than those used in MIMD machines due to simpler instruction sets,
narrower words, and smaller caches. As a result, SIMD computers generally have
more processors than MIMD computers for the same price. Due to the simpler PE
design, operations require more clock cycles to compute on a SIMD computer than a
MIMD computer. However, the speed advantage of the SIMD computer comes
from a large number of processors computing in parallel.

The MIMD and SIMD computers used in this work had similar peak computing
performance. The MIMD computer used was the 16 processor Silicon Graphics
(SGI) Challenge computer and was provided by the Advanced Research Computing
Services at The University of lowa. It consists of ten 90 MHz and six 75 MHz R8000
processors and has a peak performance of 5.4 Gflop (ten 360 Mflop and six 300
Mflop processors). The SIMD computer used was a 128 x 128 mesh connected
MasPar computer with MP2 processors and was provided by Michael 1. Miller,
Department of Electrical Engineering, Washington University in St. Louis. The peak
performance of this 128 x 128 massively parallel computer is quoted as 6.2 Gflops.

The increase in speed due to parallelizing an algorithm with N processors is
governed by Amdahl’s Law which is given by

s+p 1 1

_s+p/N_s+p/N<s' ®)
The factor X is the maximum sustainable speedup that can be achieved given that p
is the parallelizable portion and s =1 — p is the sequential or non-parallelizable
portion of the program. This means that the ideal or maximum achievable speedup
of parallelizing an algorithm with N processors is an NV times speedup. It also states
that the maximum speedup is always less than the reciprocal of the sequential
portion of the algorithm.

SIMD machines generally suffer a greater time penalty for serial portions of an
algorithm than MIMD machines. This is because the serial portions of the algo-
rithm must be executed on a single simple processor. It is conceivable that serial
sections may be speed up by executing them on the host computer microprocessor
instead of a single PE. However, this does not help in practice because the time to
transfer data from the PE array to the host computer normally exceeds the pro-
cessing time.

A
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3.1. MIMD parallel implementation issues

The SGI Challenge computer is a symmetric multiprocessing (SMP), shared
memory computer (see Fig. 2). SMP implies that the operating system treats all of
the processors as equal and the shared memory is used for processor communication
and synchronization. An important difference between shared memory and distrib-
uted memory systems is how the algorithm is parallelized. In a shared memory
system the algorithm is partitioned into sub-algorithmic procedures that are dis-
tributed across the processors. Data movement is implicit in a shared memory sys-
tem, so each processor has access to the whole memory as it executes. The drawback
of bus-based SMP systems is that they do not scale up to large number of processors
because the shared bus becomes a performance bottleneck. On the other hand, the
MasPar is a distributed memory system. In this model the programmer needs to
decide how the data is partitioned across the processors and how the data is moved
from processor to processor.

The key to implementing a parallel algorithm on the multiprocessor SGI chal-
lenge is to maximize the ratio of computation to the parallelization overhead. Par-
allel overhead is the processing time spent in creating slave processes, starting/ending
parallel regions, and executing the extra code added for parallelization. The par-
allelization overhead can be reduced by parallelizing the largest possible loops, i.e.,
the outermost loops. The parallelization overhead is generally recovered if the loop
contains more than 100 floating point operations. In addition, one should not use
more CPU’s than are necessary (see Fig. 6).

It is important to distribute the work load equally across all of the available
processors. This process is called load balancing and is typically trivial for image
based data. Efficient parallelization also requires that both communication between
processors and synchronization among processors be minimized.

| 1 ]
l Memory Bus I

System Memory

Fig. 2. The SGI Challenge computer is a shared memory architecture. Each processor has its own 64Kb
cache which is used to store local data fetched from the main memory. Built in memory contention
hardware insures that the data in each individual cache and the main memory remains consistent.
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Fig. 3. The MasPar is well suited for solving partial differential equations because each processor can send/
receive data to/from its eight nearest neighbors in parallel.

3.2. SIMD massively parallel implementation issues

The PEs in the MasPar [19] are connected in a 128 x 128 toroidal mesh (see
Fig. 3) for efficient local communication and by a global router for nonlocal com-
munication. The mesh connection of the PEs is called the xnet and allows each PE to
send/receive data (communicate) to/from its 8 nearest neighboring PEs. This feature
makes the MasPar good for solving problems that require local PE communication
such as solving partial differential equations [6]. The global router allows PEs to
send/receive data to/from other PEs that are separated by long distances. It also
allows the PEs to communicate in non-regular patterns in parallel which is important
for computing the deformed template.

3.3. Transforming the template

Each iteration of the registration algorithm requires computing the deformation
of the template and the deformation of the x, y, and z-derivatives of the template (see
Eq. (5)). Computing the deformation requires accessing the data from memory in a
non-regular pattern due to the nonlinear nature of the transformation. The MIMD
architecture has an advantage over the SIMD architecture for random memory
access because each MIMD processor has random access to the whole memory.
Mesh-connected SIMD computers suffer a loss in efficiency for randomly accessing
memory because the non-regular memory access pattern of the distributed memory
reduces data transfer parallelism.

Normally, a non-regular pattern of communication (random access) is very in-
efficient on mesh connected computers because it is not a parallel operation using
nearest neighbor data transfer. However, the MasPar has two features that reduce
this problem: the global router (see Fig. 4) and local PE indirect memory addressing
(see Fig. 5). The global router and the local PE indirect memory addressing are used
together to provide random access to the data required to deform the atlas. The
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Fig. 4. An example of a non-regular pattern of PE communication required to compute the transfor-
mation of the template. The MasPar’s global router is used to transfer data from source PEs to a desti-
nation PEs as indicated by the arrows in parallel.

template is transformed using these features in the following way. First, each PE
calculates the memory address of the data that it needs to compute its value of the
deformed template. This address is then converted into an address of a target PE
and a local memory address for the target PE. Using the target PE addresses, the
global router sends the local memory addresses from the requesting PEs to the target
PEs in parallel. Next, all of the target PEs use indirect addressing to fetch the re-
quested data from their local memory specified by the memory address in parallel.
Finally, the target PEs sends the data back to the requesting PEs in parallel using
the global router. Without the global router and the PE indirect addressing, the PEs
would be very inefficient performing the random access required to transform the
template.

The PEs on the MasPar are divided into 4 x 4 subgroupings called clusters. Only
one PE per cluster can send data and one PE can receive data during a router data
transfer. Therefore address contention occurs when two or more PEs request to
send from or receive from the same cluster. The hardware of the router handles this
address contention using a sequence of router data transfers until all of the data is
transfered. This reduces the parallelism of data transfer but is still faster than
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Fig. 5. Example of parallel indirect addressing. The value of D at each PE is set equal to the value of T
offset by the index i in parallel.

nearest neighbor PE communication for large distance, random address data
transfers.

4. Results
4.1. Performance improvement vs. the number of MIMD processors

A substantial performance improvement (see Figs. 6 and 7) was found with an
increase in the number of processors used in the MIMD implementation of the 3D
linear elastic image registration algorithm. As Amdahl’s Law suggests, the best one
can hope to achieve by increasing the number of processors is a linear increase in
computation speed. Data communication between processors and memory conten-
tion are just two of the factors that prevent a multiple processor implementation
from achieving the ideal speedup. The theoretical upper bound on performance
improvement is shown by the straight line with slope one. The remaining three
curves show the performance of the SIMD implementation on a 16 processor
R80000 SGI Challenge for data volume sizes of 32 x 32 x 25, 64 x 64 x 50, and
128 x 128 x 100 voxels, respectively. The 128 x 128 x 100 curve shows nearly a
linear speedup in computation time as the number of processors is increased. On the
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Fig. 6. Graph of the increase in performance of the 3D linear elastic image registration algorithm as a
function of increasing the number of R8000 processors for data volumes sizes of 32 x 32 x 25,
64 x 64 x 50, and 128 x 128 x 100 voxels. The straight line with slope one shows an estimate of the
theoretical upper bound on the performance. See text for additional details.

other hand, the other two curves start out with a linear speed up, but then level off at
a factor of 8 and 2 times speed up, respectively. The reason for the decrease in
performance is because the time associated with the multiple processor implemen-
tation overhead is no longer negligible compared to the algorithmic computation
time. In fact, the curve for the smallest data set actually decreases slightly as the
number of processors is increased.

Iteration Time vs.
Number of R8000 Processors

100 T
—tr— 32x32x25
——+—64x64x50
o —B8— 128x128x100
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o
£
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1 2 4 6 8 10 12 14 18
Number of Processors

Fig. 7. Graph of the 3D linear elastic deformation algorithm as a function of the number R8000 pro-
cessors for three different image volume sizes.
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Notice that the 128 x 128 x 100 curve surpasses the theoretical maximum for the
four processors case. The reason for this apparent anomaly is because the reference
single processor computation time had overhead associated with the multiple pro-
cessor implementation. The calculation of performance increase was computed by
dividing the average single 90 MHz processor iteration time by the average multiple
processor iteration time. The speedup of 4.78 for the four processor case is due to
multiple processor overhead contained in the single processor iteration time even
though only one processor was used.

Another note about the graph in Fig. 6 is that the SGI Challenge computer used
in this analysis had a mixture of ten 90 MHz and six 75 MHz R8000 processors.
The multiple processor average iteration times were generated by an unknown
combination of fast and slow processors. Thus, the increase in performance was
under estimated because it was computed with respect to the iteration time of a 90
MHz R8000 processor. The mixture of processors also changes the shape of the
theoretical upper bound. If we assume that the fastest processors are used before
the slower processors, the upper bound curve would be a straight line of slope one
for up to ten processors and the slope would decrease to 0.83 (75/90) for 11-16
Processors.

The MIMD deformation code was also timed on a 10 processor, 195 MHz
R10000 SGI Challenge computer at the Institute for Biomedical Computing,
Washington University, St. Louis, Missouri. The algorithm ran approximately 10%
faster when using 195 MHz R10000 processors instead of the 90 MHz R8000 pro-
cessors. This result was expected because the peak performance of a 195 MHz
R10000 processor is 390 MFlops while the peak performance of a 90 MHz R8000
processor is 360 MFlops.

4.2. Comparison of the MasPar and SGI challenge implementations

The 3D linear elastic deformation algorithm was implemented originally on the
MasPar in 1993 [7]. Although the MasPar implementation was optimized for the
SIMD parallel architecture, it used brute-force to compute the deformation. As a
result, the time per iteration increased as the number of basis functions increased.
The SGI Challenge implementation has been optimized so that the time per iteration
is constant independent of the number of basis functions. A performance compar-
ison between the MasPar and Challenge implementations is shown in Figs. 8 and 9.
This graph assumes that the number of basis harmonics are increased by one in all
three coordinate directions after every 40 iterations. Fig. 8 shows that the 16 pro-
cessor MIMD implementation is 20 times faster than the brute-force SIMD
128 x 128 processor implementation for 128 x 128 x 100 voxel volume deformations
and 300 iterations. This graph also shows that the speedup for the 64 x 64 x 50 voxel
deformation is on the order of 12 times at 100 iterations when comparing a 64 x 64
processor MasPar to the 16 processor Challenge. The number of MasPar processors
was reduced to 64 x 64 so that the mesh size would match the first two dimensions
for this data set. Therefore, the performance of the MasPar could be improved by a
maximum of four times if all 128 x 128 processors were used in this case.
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Fig. 8. Execution times for the 3D linear elastic transformation implemented on a 128 x 128 MasPar
SIMD computer and a 16 processor SGI Challenge MIMD computer as a function of two different image
volume sizes. Note that the MasPar was restricted to a 64 x 64 mesh for the 64 x 64 x 50 voxel image
deformation.

MasPar vs. 16 R8000s

—— 64x64x50
—8—128x128x100

Fig. 9. Relative speedup of the optimized 3D linear elasticity algorithm implemented on the 16 processor
SGI Challenge over the 128 x 128 MasPar SIMD computer as a function of a 64 x 64 x 50 and
128 x 128 x 100 volume sizes. Note that the MasPar was restricted to a 64 x 64 mesh for the 64 x 64 x 50
voxel image deformation.

Finally, we address the question of how much faster the 16 processor SGI
Challenge is than the 128 x 128 MasPar for the optimized 3D linear elastic defor-
mation algorithm. To answer this question, we need to estimate how fast the opti-
mized deformation algorithm would be on the MasPar. It will be assumed that the
fastest that an optimized iteration can be completed on the MasPar is equal to the
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fastest iteration of the brute-force implementation. Thus, an optimized iteration for
128 x 128 x 100 voxel volume would take 6.6 s on a 128 x 128 MasPar (see Fig. 8).
Dividing 6.6 s by 1.52 s (the average time for the Challenge implementation) implies
that the 16 processor SGI Challenge is a minimum of 4.3 times faster than the
128 x 128 MasPar for computing the 3D linear elastic deformation algorithm.

5. Conclusion

This paper discussed the issues involved with implementing a computationally
intensive 3D medical image registration algorithm on a 16 processor SGI Challenge
computer (SIMD architecture) and on a 128 x 128 processor MasPar computer
(MIMD architecture). For large data sets, the MIMD implementation was shown to
have nearly linear performance improvement as the number of processors were in-
creased. Finally, the optimized MIMD implementation was shown to be roughly 20
times faster than the brute-force SIMD implementation. Applying similar optimi-
zations to the MasPar implementation would make the 16 processor SGI Challenge
over 4 times faster than the 128 x 128 MasPar for processing large data sets.
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