
Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

55:132/22C:160
High Performance Computer Architecture

Intel/HP EPIC/IA-64 Architecture

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Intel/HP EPIC/IA-64 Architecture
EPIC (Explicitly Parallel Instruction Computing)
- An ISA philosophy/approach

e.g. CISC, RISC, VLIW
- Very closely related to but not the same as VLIW

IA-64
- An ISA definition

e.g. IA-32 (was called x86), PA-RISC
- Intel’s new 64-bit ISA
- An EPIC type ISA

Itanium (was code named Merced)
- A processor implementation of an ISA

e.g. P6, PA8500
- The first implementation of the IA-64 ISA

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

IA-64 Architecture

128 general-purpose registers
128 floating-point registers
Arbitrary number of functional units
Arbitrary latencies on the functional units
Arbitrary number of memory ports
Arbitrary implementation of the memory hierarchy

Needs retargetable compiler and recompilation to
achieve maximum program performance on different
IA-64 implementations

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

IA-64 Instruction Format
IA-64 “Bundle”
- Total of 128 bits
- Contains three IA-64 instructions (aka syllables)
- Template bits in each bundle specify dependencies both within

a bundle as well as between sequential bundles
- A collection of independent bundles forms a “group”

A more efficient and flexible way to encode ILP then a fixed
VLIW format

IA-64 Instruction
- Fixed-length 40 bits long
- Contains three 7-bit register specifiers
- Contains a 6-bit field for specifying one of the 64 one-bit

predicate registers

inst1 inst2 inst3 temp

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

IA-64 EPIC vs. Classic VLIW
Similarities:
- Compiler generated wide instructions
- Static detection of dependencies
- ILP encoded in the binary (a group)
- Large number of architected registers

Differences:
- Instructions in a bundle can have dependencies
- Hardware interlock between dependent instructions
- Accommodates varying number of functional units and

latencies
- Allows dynamic scheduling and functional unit binding

Static scheduling are “suggestive” rather than absolute
⇒Code compatibility across generations

but software won’t run at top speed until it is recompiled so
“shrink-wrap binary” might need to include multiple builds

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Additional Features of IA64

Predicated execution
Speculative, non-faulting Load instruction
Software-assisted branch prediction
Register stack
Rotating register frame
Software-assisted memory hierarchy

See “Understanding the IA-64 Architecture”
by G. Doshi, Intel

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

cmp

Predicated Execution
Each instruction can be separately predicated
64 one-bit predicate registers

Each instruction carries a 6-bit predicate field

An instruction is effectively a NOP if its predicate is false
Assumes IA-64 processors have lots of spare resources
Converts control flow into dataflow

br
else1
else2

br
then1
then2
join1
join2

p1 p2 ←cmp

join1

join2

else1p2

then2p1 else2p2

then1p1

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Speculative, Non-Faulting Load

ld.s fetches speculatively from memory
i.e. any exception due to ld.s is suppressed

If ld.s r did not cause an exception then chk.s r is an
NOP, else a branch is taken (to some compensation
code)

inst 1
inst 2
….

ld r1=[a]
use=r1

unsafe
code
motion

….

ld.s r1=[a]
inst 1
inst 2
….
br

chk.s r1
use=r1

…. ld r1=[a]

br

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Speculative, Non-Faulting Load

Speculative load data can be consumed prior to check
“speculation” status is propagated with speculated data
Any instruction that uses a speculative result also
becomes speculative itself (i.e. suppressed exceptions)
chk.s checks the entire dataflow sequence for exceptions

inst 1
inst 2
….
br

ld r1=[a]
use=r1

unsafe
code
motion

….

ld.s r1=[a]
inst 1
inst 2
use=r1
….
br

chk.s use…. ld r1=[a]
use=r1

br

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Speculative “Advanced” Load

ld.a starts the monitoring of any store to the same
address as the advanced load
If no aliasing has occurred since ld.a, ld.c is a NOP
If aliasing has occurred, ld.c re-loads from memory

inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
….
st [?]
….
ld.c r1=[x]
use=r1

st[?]

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Using Speculative Load Results

inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
use=r1
….
st [?]
….
chk.a r1
….

st[?]

ld r1=[a]
use=r1

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Branch Prediction
Static branch hints can be encoded with every branch
- taken vs. not-taken
- whether to allocate an entry in the dynamic BP hardware

SW and HW have joint control of BP hardware
- “brp” (branch prediction) instruction can be issued ahead of

the actual branch to preset the contents of BPT and BTAC
Itanium uses a 512-entry 2-level BPT and 64-entry BTAC

TAR (Target Address Register)
- a small, fully-associative BTAC-like structure
- contents are controlled entirely by a “prepare-to-branch” inst.
- a hit in TAR overrides all other predictions

RSB (Return Address Stack)
- Procedure return addr is pushed (or popped) when a

procedure is called (or when it returns)
- Predicts nPC when executing register-indirect branches

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

128 general purpose physical
integer registers
Register names R0 to R31 are
static and refer to the first 32
physical GPRs
Register names R32 to R127 are
known as “rotating registers” and
are renamed onto the remaining
96 physical registers by an offset
Remapping wraps around the
rotating registers such that when
offset is non-zero, physical
location of R127 is just below
R32

Register Renaming

ph
ys

ic
al

 re
gi

st
er

R
0

to
 R

31
ph

ys
ic

al
 re

gi
st

er
 R

32
 to

 R
12

7

re
gi

st
er

 n
am

e
R

32
 a

nd
 u

p

offset

re
g

na
m

e
R

0
to

 R
31

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Register Stack for Procedure Calls

On a procedure call, the rename offset is bumped to the beginning of
output argument registers
Callee can then allocate its own working frame (up to 96 regs)
If there isn’t enough free regs to be allocated, HW automatically frees
up space by spilling life contents not in the current frame to memory

Register stack appears infinite to SW

static
GPRs

in args

locals

out args

offset

free

ca
lle

r f
ra

m
e

static
GPRs

in args
offset

free

locals
out args

ex
pa

nd
ed

 c
al

le
e

fra
m

e

static
GPRs

life but not
accessed

in args
offset

free

life but not
accessed

alloccall

te
m

p.
 c

al
le

e
fra

m
e

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Rotating Loop Frames for Loop Pipelining
Suppose Bi is is only data

dependent (through data
stored in registers) on Ai; and
Ci only on Bi

The “pipelined” kernel block
(containing independent
computation from Ci, Bi+1 and
Ai+2) potentially has better
ILP

What happens if Ci is also data
dependent on Ai

The result placed in register
by A gets clobbered by the
next execution of A (in the
next cycle) before C can use
it two cycles from now

A

B

C

A

B

C

A

B A

C

C B

ep
ilo

g
ke

rn
el

pr
ol

og

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

i=0
while (i<99) {

;; a[i]=a[i]/10
Rx = a[i]
Ry = Rx / 10
a[i] = Ry
i++

}

Nice Loop Pipelining Example

i=0
while (i<99) {

Rx = a[i]
Ry = Rx / 10
a[i] = Ry

Rx = a[i+1]
Ry = Rx / 10
a[i+1] = Ry

Rx = a[i+2]
Ry = Rx / 10
a[i+2] = Ry

i=i+3
}

i=0
Ry=a[0] / 10
Rx=a[1]

while (i<97) {
a[i]=Ry

Ry=Rx / 10

Rx=a[i+2]

i++
}

a[97]=Ry
a[98]=Rx / 10

A
B
C

A

B

C

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Loop Pipelining Requiring Renaming

i=0
while (i<99) {

;; a[i]=a[i]/10+a[i]
Rx = a[i]
Ry = Rx / 10
a[i] = Ry+Rx
i++

}

i=0
Ry=a[0] / 10
Rx=a[1]

while (i<97) {
a[i]=Ry+Rx’

Ry=Rx / 10

Rx’=Rx
Rx=a[i+2]

i++
}

a[97]=Ry + Rx’
a[98]=Rx / 10 + Rx

i=0
while (i<99) {

Rx = a[i]
Ry = Rx / 10
a[i] = Ry+Rx

Rx = a[i+1]
Ry = Rx / 10
a[i+1] = Ry+Rx

Rx = a[i+2]
Ry = Rx / 10
a[i+2] = Ry+Rx

i=i+3
}

WAR

WAR

A
B
C

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Renaming with Rotating Registers
i=0
Ry=a[0] / 10
Rx=a[1]

while (i<97) {
a[i]=Ry+Rx’

Ry=Rx / 10

Rx’=Rx
Rx=a[i+2]

i++
}

a[97]=Ry + Rx’
a[98]=Rx / 10 + Rx

i= -2

while (i<99) {
pred(i>-1):

a[i]=Ry+RR(x-2)

pred(i>-2 && i<98):
Ry=RR(x-1) / 10

pred(i<97):
RR(x)=a[i+2]

`increase RR offset by 1’
i++

}

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Itanium Specifics
6-wide 10-stage pipeline
Fetch 2 bundles per cycle with the help of BP into a 8-bundle deep
fetch queue
512-entry 2-level BPT, 64-entry BTAC, 4 TAR, and a RSB
Issue up to 2 bundles per cycle some mixes of 6 instructions

e.g. (MFI,MFI) or (MIB,MIBh)
Can issue as little as one syllable per cycle on RAW hazard
interlock or structural hazard (scoreboard for RAW detection)
8R-6W 128 Entry Int. GPR, 128 82-bit FPR, 64 predicate reg’s
4 globally-bypassed single-cycle integer ALUs with MMX,
2 FMACs, 2 LSUs, 3 BUs
Can execute IA-32 software directly
Intended for high-end server and workstations

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Itanium Performance

system

SPEC2000

int fp

hp workstation i2000
800MHz, 2-way, 2MB cache,
Windows XP

658

hp workstation i2000
800MHz, 1-way, 2MB cache,
HP-UX

365* 610*

hp workstation i2000
733MHz, 1-way, 2MB cache,
Windows XP

623

hp workstation i2000
733MHz, 1-way, 2MB cache,
HP-UX

335* 577*

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

How does it compare?

SPEC_rate2000
(peak)

system int fp

hp
workstation
x4000
uni-
processor

6.36 6.43

hp
workstation
x4000
dual
processor

11.70 10.50

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

FYI

Alpha
21264

AMD
Athlon

Intel
P4

MIPS
R12000

IBM
Power3

HP
PA-8600

SUN
Ultra-III

833 1200 1500 400 450 552 900Clock (MHz)

Microprocessor Report, December 2000

518 524 320 286 417 438SPECint 2000

SPECfp 2000 590 304 549 319 356 400 427

Copyright 2001, James C. Hoe, CMU and John P. Shen, Intel

Preformance : Itanium 2 vs. Superscalar

Source: Hennessey and Patterson, Computer Architecture, A Quantitative Approach, Fourth Edition, Appendix G

