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The purpose of this assignment is to investigate the potential for instruction-level 
parallelism in real programs. You will do this by investigating a simple code example.   
 
A hash table is a popular data structure for organizing a large collection of data items so 
that one can quickly answer questions such as, “Does an element of value 100 exist in the 
collection?” This is done by assigning data elements into one of a large number of 
buckets according to a hash function value generated from the data values. The data items 
in each bucket are typically organized as a linked list sorted according to a given order. A 
lookup of the hash table starts by determining the bucket that corresponds to the data 
value in question. It then traverses the linked list of data elements in the bucket and 
checks if any element in the list has the value in question. As long as one keeps the 
number of data elements in each bucket small, the search result can be determined very 
quickly. 
 
The C source code shown below inserts a large number (N_ELEMENTS) of elements 
into a hash table, whose 1024 buckets are all linked lists sorted in ascending order 
according to the value of the elements. The array element[] contains the elements to 
be inserted, allocated on the heap. Each iteration of the outer (for) loop, starting at line 6, 
enters one element into the hash table. 
Line 9 calculates hash_index, the hash function value, from the data value stored in 
element[i]. The hashing function used is a very simple one; it consists of the least 
significant 10 bits of an element’s data value. This is done by computing the bitwise 
logical AND of the element data value and the (binary) bit mask 11 1111 1111 (1023 in 
decimal). 
 
1 typedef struct _Element { 
2  int value; 
3  struct _Element *next; 
4 } Element; 
5 Element element[N_ELEMENTS], *bucket[1024]; 

/* The array element is initialized with the items to be 
inserted; the pointers in the array bucket are 
initialized to NULL. */ 

 
6 for (i = 0; i < N_ELEMENTS; i++) 
 { 
7  Element *ptrCurr, **ptrUpdate; 
8  int hash_index; 

 /* Find the location at which the new element is to 



 be inserted. */ 
9  hash_index = element[i].value & 1023; 
10  ptrUpdate = &bucket[hash_index]; 
11  ptrCurr = bucket[hash_index]; 

/* Find the place in the chain to insert the new 
element. */ 

12  while (ptrCurr && 
13   ptrCurr->value <= element[i].value) 
14  { 
15   ptrUpdate = &ptrCurr->next; 
16   ptrCurr = ptrCurr->next; 
  } 

/* Update pointers to insert the new element into 
the chain. */ 

17  element[i].next = *ptrUpdate; 
18  *ptrUpdate = &element[i]; 

} 
 

 
 
 
The above figure illustrates the hash table data structure used in our C code example. The 
bucket array on the left side of the figure is the hash table. Each entry of the bucket array 
contains a pointer to the linked list that stores the data elements in the bucket. If bucket i 
is currently empty, the corresponding bucket[i] entry contains a NULL pointer. In 
Figure 3.15, the first three buckets contain one data element each; the other buckets are 
empty. 
 
Variable ptrCurr contains a pointer used to examine the elements in the linked list of a 
bucket. At Line 11, ptrCurr is set to point to the first element of the linked list stored 
in the given bucket of the hash table. If the bucket selected by the hash_index is 
empty, the corresponding bucket array entry contains a NULL pointer. 
 
The while loop starts at line 12. Line 12 tests if there are any more data elements to be 
examined by checking the contents of variable ptrCurr. Lines 13 through 16 will be 



skipped if there are no more elements to be examined, either because the bucket is empty, 
or because all the data elements in the linked list have been examined by previous 
iterations of the while loop. In the first case, the new data element will be inserted as the 
first element in the bucket. In the second case, the new element will be inserted as the last 
element of the linked list. 
 
In the case where there are still more elements to be examined, line 13 tests if the current 
linked list element contains a value that is smaller than or equal to that of the data 
element to be inserted into the hash table. If the condition is true, the while loop will 
continue to move on to the next element in the linked list; lines 15 and 16 advance to the 
next data element of the linked list by moving ptrCurr to the next element in the linked 
list. Otherwise, it has found the position in the linked list where the new data element 
should be inserted; the while loop will terminate and the new data element will be 
inserted right before the element pointed to by ptrCurr. 
 
The variable ptrUpdate identifies the pointer that must be updated in order to insert 
the new data element into the bucket. It is set by line 10 to point to the bucket entry. If the 
bucket is empty, the while loop will be skipped altogether and the new data element is 
inserted by changing the pointer in bucket[hash_index] from NULL to the address 
of the new data element by line 18. After the while loop, ptrUpdate points to the 
pointer that must be updated for the new element to be inserted into the appropriate 
bucket. 
After the execution exits the while loop, lines 17 and 18 finish the job of inserting the 
new data element into the linked list. In the case where the bucket is empty, ptrUpdate 
will point to bucket[hash_index], which contains a NULL pointer. Line 17 will 
then assign that NULL pointer to the next pointer of the new data element. Line 18 
changes bucket[hash_table] to point to the new data element. In the case where 
the new data element is smaller than all elements in the linked list, ptrUpdate will also 
point to bucket[hash_table], which points to the first element of the linked list. 
In this case, line 17 assigns the pointer to the first element of the linked list to the next 
pointer of the new data structure. 
 
In the case where the new data element is greater than some of the linked list elements 
but smaller than the others, ptrUpdate will point to the next pointer of the element 
after which the new data element will be inserted. In this case, line 17 makes the new 
data element to point to the element right after the insertion point. Line 18 makes the 
original data element right before the insertion point to point to the new data element. 
The reader should verify that the code works correctly when the new data element is to be 
inserted to the end of the linked list. 
 
Now that we have a good understanding of the C code, we will proceed with analyzing 
the amount of instruction-level parallelism available in this piece of code.  We will focus 
on the amount of instruction-level parallelism available to the run time hardware 
scheduler under the most favorable execution scenarios (the ideal case). Specifically, 
assume that the hash table is initially empty. Suppose there are 512 new data elements, 
whose values are numbered sequentially from 0 to 511, so that each goes in its own 



bucket (this reduces the problem to a matter of updating known array locations!). Figure 
3.15 shows the hash table contents after the first three elements have been inserted, 
according to this “ideal case.” Since the value of element[i] is simply i in this 
ideal case, each element is inserted into its own bucket. 
 
Further assume that each line of source code takes one execution cycle and, for the 
purposes of computing ILP, takes one instruction. These assumptions greatly simplify 
bookkeeping in solving the following questions. Note that the for and while statements 
execute on each iteration of their respective loops, to test if the loop should continue. In 
this ideal case, most of the dependences in the code sequence are relaxed and a high 
degree of ILP is therefore readily available.  
 
Further suppose that the code is executed on an “ideal” processor with infinite issue 
width, unlimited renaming, “omniscient” knowledge of memory access disambiguation, 
branch prediction, and so on, so that the execution of instructions is limited only by data 
dependence. Consider the following in this context: 
 

a. Describe the data (true, anti, and output) and control dependences that govern the 
parallelism of this code segment, as seen by a run time hardware scheduler. Indicate 
only the actual dependences (i.e., ignore dependences between stores and loads that 
access different addresses, even if a compiler or processor would not realistically 
determine this). Draw the dynamic dependence graph for six consecutive iterations 
of the outer loop (for insertion of six elements), under the ideal case. Note that in 
this dynamic dependence graph, we are identifying data dependences between 
dynamic instances of instructions: each static instruction in the original program 
has multiple dynamic instances due to loop execution. Hint: The following 
definitions may help you find the dependences related to each instruction: 
 Data true dependence: On the results of which previous instructions does each 

instruction immediately depend? 
 Data antidependence: Which instructions subsequently write locations read by 

the instruction? 
 Data output dependence: Which instructions subsequently write locations 

written by the instruction? 
 Control dependence: On what previous decisions does the execution of a 

particular instruction depend (in what case will it be reached)? 
 
b. Assuming the ideal case just described, and using the dynamic dependence graph 

you just constructed, how many instructions are executed, and in how many 
cycles? 

 
c.  What is the average level of ILP available during the execution of the for loop? 
 
d. For simplicity, assume that only variables i, hash_index, ptrCurr, and 
ptrUpdate plus the pointer to the base of element[] array need to occupy 
registers. Assuming general renaming and that registers are recycled as soon as 
their contents are no longer needed, how many registers are necessary to achieve 



the maximum achievable parallelism in part (b)? 
 
e. Assume that in your answer to part (a) there are 7 instructions in each iteration. 

Now, assuming a consistent steady-state schedule of the instructions in the 
example and an issue rate of 2 instructions per cycle, how is execution time 
affected? 

 
f. Finally, calculate the minimal instruction window size needed to achieve the 

maximal level of parallelism in part (a). 


