

Learning Systems (2/2)

- Association rule algorithms
- Text mining algorithms
- Meta-learning algorithms
- Inductive learning programming
- Sequence learning

Regression Models

- Simple linear regression = Linear combination of inputs
- Logistic regression = Logistic function of a linear combination of inputs

 Classic "perceptron"

Types of Decision Trees

- Binary splits
- Continuous variables • C4.5
 - Quinlan (1993)
 - Also used for rule induction

Knowledge Representation Forms

- Trees (graphs)
- Patterns (matrices)

Γ	DM: P	roduc _{Train}	ct Qua	lity E	xample
Product	Process	Test_1	Process	Test_2	Quality
ID	param 1		param_2		D
1	1.02	Red	2.98	High	Good_Quality
2	2.03	Black	1.04	Low	Poor_Quality
3	0.99	Blue	3.04	High	Good_Quality
4	2.03	Blue	3.11	High	Good_Quality
5	0.03	Orange	0.96	Low	Poor_Quality
6	0.04	Blue	1.04	Medium	Poor_Quality
7	0.99	Orange	1.04	Medium	Good_Quality
8	1.02	Red	0.94	Low	Poor_Quality
The The	University of I	owa		Intellige	nt Systems Laboratory

Test: Leaving-	-one-out		
Confusion Mat	trix		
	Poor_Quality	Good_Quality	None
Poor_Quality	3	1	0
Good_Quality	1	3	0
Average Accur	acy [%]		
	Correct	Incorrect	None
Total	75.00	25.00	0.00
Poor_Quality	75.00	25.00	0.00
Good_Quality	75.00	25.00	0.00

Rule 113	
IF (B_Master >= 1634.26)	
AND (B_Temp in (1601.2, 1660.22]	
AND (B_Pressure in [17.05, 18.45))	
AND (A_point = 0.255) AND (Average)	$e_{O2} = 77$
THEN (Eff = 87) OR (Eff = 88);	
[6, 6, 23.08%, 100.00%][0, 0, 0, 0, 0, 0]	0, 0, 3, 3, 0]
[2164, 2167, 2168], {2163, 2165, 216	66}]

Decision Rule vs Decision Tree Algorithms Training Data Set F1 F2 F3 F4 D One Two Three Four

Data Farming

Pull data approach

VS

Push data approach in classical

data mining

Data Mining Standards

- Predictive Model Markup Language (PMML)
 - The Data Mining Group (www.dmg.org)
 - XML based (DTD)
- Java Data Mining API spec request (JSR-000073) - Oracle, Sun, IBM, ...
 - Support for data mining APIs on J2EE platforms
 - Build, manage, and score models programmatically
- OLE DB for Data Mining
 - Microsoft
 - Table based
 - Incorporates PMML

Summary

- Data mining algorithms support a new paradigm: Identify what is unique about an object
- DM tools to enter new areas of information analysis

References (1/2)

Kusiak, A. Rough Set Theory: A Data Mining Tool for Semiconductor Manufacturing, *IEEE Transactions on Electronics Packaging Manufacturing*, Vol. 24, No. 1, 2001, pp. 44-50.

Kusiak, A., Decomposition in Data Mining: An Industrial Case Study, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 4, 2000, pp. 345-353.

Kusiak, A., J.A. Kern, K.H. Kernstine, and T.L. Tseng, Autonomous Decision-Making: A Data Mining Approach, *IEEE Transactions on Information Technology in Biomedicine*, Vol. 4, No. 4, 2000, pp. 274-284.

References (2/2)

A. Kusiak, Feature Transformation Methods in Data Mining, *IEEE Transactions on Electronics Packaging Manufacturing*, Vol. 24, No. 3, 2001, pp. 214 -221.

A. Kusiak, I.H. Law, M.D. Dick, The G-Algorithm for Extraction of Robust Decision Rules: Children's Postoperative Intra-atrial Arrhythmia Case Study, *IEEE Transactions on Information Technology in Biomedicine*, Vol. 5, No. 3, 2001, pp. 225-235.